111 lines
3.5 KiB
Markdown
Raw Normal View History

# AI Backend Example
Demonstrates the TypeDialog AI backend with RAG (Retrieval-Augmented Generation) system.
⚠️ **Important**: The AI backend cannot remain a library. See **[INTEGRATION_GUIDE.md](INTEGRATION_GUIDE.md)** for how to integrate into real services.
## Features Shown
- **Creating a RAG System**: Initialize with configurable semantic/keyword weights
- **Batch Document Addition**: Efficient bulk document indexing
- **Document Retrieval**: Search using hybrid semantic + keyword approach
- **Batch Document Removal**: Efficient bulk document deletion
- **Performance Comparison**: Shows speedup of batch vs sequential operations
## What is the AI Backend?
The AI backend is **not a rendering backend** (like CLI, TUI, Web). It's a **library of AI/ML capabilities**:
- **RAG System**: Combines semantic search (embeddings) + keyword search (full-text)
- **Knowledge Graph**: Entity and relationship modeling using petgraph
- **Embeddings**: Text-to-vector conversion for semantic similarity
- **Vector Store**: HNSW-optimized approximate nearest neighbor search
- **Full-Text Indexer**: Efficient keyword-based document search
- **Persistence**: Save/load AI state to disk with version compatibility
## Running the Example
```bash
# Build the example
just build::ai
# Run the example
cargo run --example main --features ai_backend
# Or directly
cargo run --example main --features ai_backend --release
```
## Output Highlights
The example demonstrates:
1. **Batch Add Performance**: Adding 5 documents efficiently
2. **Retrieval Quality**: Combining semantic + keyword scores
3. **Batch Remove**: Efficiently removing multiple documents
4. **Performance Benchmark**: 20-document test showing ~2x speedup with batch ops
## API Overview
```rust
// Create RAG system
let mut rag = RagSystem::new(RagConfig::default())?;
// Add documents (batch - efficient for large sets)
let docs = vec![
("id1".into(), "content1".into()),
("id2".into(), "content2".into()),
];
rag.add_documents_batch(docs)?;
// Retrieve relevant documents
let results = rag.retrieve("query text")?;
for result in results {
println!("{}: {}", result.doc_id, result.content);
}
// Remove documents (batch - efficient)
let removed = rag.remove_documents_batch(&["id1", "id2"]);
// Save/Load
rag.save_to_file("rag.bin")?;
let loaded = RagSystem::load_from_file("rag.bin")?;
```
## Configuration
`RagConfig` controls retrieval behavior:
```rust
RagConfig {
semantic_weight: 0.6, // Weight for vector similarity
keyword_weight: 0.4, // Weight for keyword matching
max_results: 5, // Maximum results to return
min_score: 0.0, // Minimum combined score threshold
}
```
## Integration Points
The AI backend can be integrated with:
- **CLI Backend**: Add AI-powered search to CLI prompts
- **TUI Backend**: Add semantic search UI
- **Web Backend**: Add AI features to HTTP forms
- **Custom Applications**: Use as a library in any Rust project
## Performance Notes
- **Vector Store**: Uses HNSW for O(log N) approximate nearest neighbor search
- **Batch Operations**: Avoid repeated index rebuilds (2x speedup typical)
- **Embeddings**: Deterministic hash-based (production: integrate real ML models)
- **Full-Text Index**: Simple substring matching (production: consider tantivy)
## Next Steps
- Integrate Knowledge Graph for relationship modeling
- Use real embedding models (OpenAI, local transformers)
- Add custom similarity metrics
- Implement caching strategies
- Build domain-specific RAG pipelines