AI Backend Example
Demonstrates the TypeDialog AI backend with RAG (Retrieval-Augmented Generation) system.
⚠️ Important: The AI backend cannot remain a library. See INTEGRATION_GUIDE.md for how to integrate into real services.
Features Shown
- Creating a RAG System: Initialize with configurable semantic/keyword weights
- Batch Document Addition: Efficient bulk document indexing
- Document Retrieval: Search using hybrid semantic + keyword approach
- Batch Document Removal: Efficient bulk document deletion
- Performance Comparison: Shows speedup of batch vs sequential operations
What is the AI Backend?
The AI backend is not a rendering backend (like CLI, TUI, Web). It's a library of AI/ML capabilities:
- RAG System: Combines semantic search (embeddings) + keyword search (full-text)
- Knowledge Graph: Entity and relationship modeling using petgraph
- Embeddings: Text-to-vector conversion for semantic similarity
- Vector Store: HNSW-optimized approximate nearest neighbor search
- Full-Text Indexer: Efficient keyword-based document search
- Persistence: Save/load AI state to disk with version compatibility
Running the Example
# Build the example
just build::ai
# Run the example
cargo run --example main --features ai_backend
# Or directly
cargo run --example main --features ai_backend --release
Output Highlights
The example demonstrates:
- Batch Add Performance: Adding 5 documents efficiently
- Retrieval Quality: Combining semantic + keyword scores
- Batch Remove: Efficiently removing multiple documents
- Performance Benchmark: 20-document test showing ~2x speedup with batch ops
API Overview
// Create RAG system
let mut rag = RagSystem::new(RagConfig::default())?;
// Add documents (batch - efficient for large sets)
let docs = vec![
("id1".into(), "content1".into()),
("id2".into(), "content2".into()),
];
rag.add_documents_batch(docs)?;
// Retrieve relevant documents
let results = rag.retrieve("query text")?;
for result in results {
println!("{}: {}", result.doc_id, result.content);
}
// Remove documents (batch - efficient)
let removed = rag.remove_documents_batch(&["id1", "id2"]);
// Save/Load
rag.save_to_file("rag.bin")?;
let loaded = RagSystem::load_from_file("rag.bin")?;
Configuration
RagConfig controls retrieval behavior:
RagConfig {
semantic_weight: 0.6, // Weight for vector similarity
keyword_weight: 0.4, // Weight for keyword matching
max_results: 5, // Maximum results to return
min_score: 0.0, // Minimum combined score threshold
}
Integration Points
The AI backend can be integrated with:
- CLI Backend: Add AI-powered search to CLI prompts
- TUI Backend: Add semantic search UI
- Web Backend: Add AI features to HTTP forms
- Custom Applications: Use as a library in any Rust project
Performance Notes
- Vector Store: Uses HNSW for O(log N) approximate nearest neighbor search
- Batch Operations: Avoid repeated index rebuilds (2x speedup typical)
- Embeddings: Deterministic hash-based (production: integrate real ML models)
- Full-Text Index: Simple substring matching (production: consider tantivy)
Next Steps
- Integrate Knowledge Graph for relationship modeling
- Use real embedding models (OpenAI, local transformers)
- Add custom similarity metrics
- Implement caching strategies
- Build domain-specific RAG pipelines