2026-02-03 21:35:00 +00:00
|
|
|
use std::hint::black_box;
|
|
|
|
|
|
|
|
|
|
use criterion::{criterion_group, criterion_main, Criterion};
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
use tokio::sync::mpsc;
|
2026-02-03 21:35:00 +00:00
|
|
|
use vapora_analytics::{AgentEvent, EventPipeline};
|
|
|
|
|
|
|
|
|
|
fn create_test_event(i: usize) -> AgentEvent {
|
|
|
|
|
if i % 20 == 0 {
|
|
|
|
|
AgentEvent::new_task_failed(
|
|
|
|
|
format!("agent-{}", i % 5),
|
|
|
|
|
format!("task-{}", i),
|
|
|
|
|
"timeout error".to_string(),
|
|
|
|
|
)
|
|
|
|
|
} else {
|
|
|
|
|
AgentEvent::new_task_completed(
|
|
|
|
|
format!("agent-{}", i % 5),
|
|
|
|
|
format!("task-{}", i),
|
|
|
|
|
1000 + (i as u64 * 100),
|
|
|
|
|
100 + (i as u64 * 10),
|
|
|
|
|
50,
|
|
|
|
|
)
|
|
|
|
|
}
|
|
|
|
|
}
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
|
|
|
|
|
fn pipeline_emit_event(c: &mut Criterion) {
|
|
|
|
|
c.bench_function("emit_single_event", |b| {
|
|
|
|
|
b.to_async(tokio::runtime::Runtime::new().unwrap())
|
|
|
|
|
.iter(|| async {
|
|
|
|
|
let (alert_tx, _alert_rx) = mpsc::unbounded_channel();
|
|
|
|
|
let (pipeline, _) = EventPipeline::new(alert_tx);
|
|
|
|
|
|
|
|
|
|
let event = AgentEvent::new_task_completed(
|
|
|
|
|
black_box("agent-1".to_string()),
|
|
|
|
|
black_box("task-1".to_string()),
|
|
|
|
|
1000,
|
|
|
|
|
100,
|
|
|
|
|
50,
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
black_box(pipeline.emit_event(black_box(event)).await)
|
|
|
|
|
});
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn pipeline_filter_events(c: &mut Criterion) {
|
|
|
|
|
c.bench_function("filter_events_100_events", |b| {
|
|
|
|
|
b.to_async(tokio::runtime::Runtime::new().unwrap())
|
|
|
|
|
.iter_batched(
|
|
|
|
|
|| {
|
|
|
|
|
let rt = tokio::runtime::Runtime::new().unwrap();
|
|
|
|
|
rt.block_on(async {
|
|
|
|
|
let (alert_tx, _alert_rx) = mpsc::unbounded_channel();
|
|
|
|
|
let (pipeline, _) = EventPipeline::new(alert_tx);
|
|
|
|
|
|
|
|
|
|
for i in 0..100 {
|
|
|
|
|
let event = AgentEvent::new_task_completed(
|
|
|
|
|
format!("agent-{}", i % 5),
|
|
|
|
|
format!("task-{}", i),
|
|
|
|
|
1000 + (i as u64 * 100),
|
|
|
|
|
100 + (i as u64 * 10),
|
|
|
|
|
50,
|
|
|
|
|
);
|
|
|
|
|
pipeline.emit_event(event).await.ok();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pipeline
|
|
|
|
|
})
|
|
|
|
|
},
|
|
|
|
|
|pipeline| async move {
|
|
|
|
|
black_box(
|
|
|
|
|
pipeline
|
|
|
|
|
.filter_events(|e| e.agent_id == "agent-1")
|
|
|
|
|
)
|
|
|
|
|
},
|
|
|
|
|
criterion::BatchSize::SmallInput,
|
|
|
|
|
);
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn pipeline_get_error_rate(c: &mut Criterion) {
|
|
|
|
|
c.bench_function("get_error_rate_200_events", |b| {
|
|
|
|
|
b.to_async(tokio::runtime::Runtime::new().unwrap())
|
|
|
|
|
.iter_batched(
|
|
|
|
|
|| {
|
|
|
|
|
let rt = tokio::runtime::Runtime::new().unwrap();
|
|
|
|
|
rt.block_on(async {
|
|
|
|
|
let (alert_tx, _alert_rx) = mpsc::unbounded_channel();
|
|
|
|
|
let (pipeline, _) = EventPipeline::new(alert_tx);
|
|
|
|
|
|
|
|
|
|
for i in 0..200 {
|
2026-02-03 21:35:00 +00:00
|
|
|
let event = create_test_event(i);
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
pipeline.emit_event(event).await.ok();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pipeline
|
|
|
|
|
})
|
|
|
|
|
},
|
2026-01-11 21:32:56 +00:00
|
|
|
|pipeline| async move { black_box(pipeline.get_error_rate(60).await.ok()) },
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
criterion::BatchSize::SmallInput,
|
|
|
|
|
);
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn pipeline_get_top_agents(c: &mut Criterion) {
|
|
|
|
|
c.bench_function("get_top_agents_500_events", |b| {
|
|
|
|
|
b.to_async(tokio::runtime::Runtime::new().unwrap())
|
|
|
|
|
.iter_batched(
|
|
|
|
|
|| {
|
|
|
|
|
let rt = tokio::runtime::Runtime::new().unwrap();
|
|
|
|
|
rt.block_on(async {
|
|
|
|
|
let (alert_tx, _alert_rx) = mpsc::unbounded_channel();
|
|
|
|
|
let (pipeline, _) = EventPipeline::new(alert_tx);
|
|
|
|
|
|
|
|
|
|
for i in 0..500 {
|
|
|
|
|
let event = AgentEvent::new_task_completed(
|
|
|
|
|
format!("agent-{}", i % 10),
|
|
|
|
|
format!("task-{}", i),
|
|
|
|
|
1000 + (i as u64 * 100) % 5000,
|
|
|
|
|
100 + (i as u64 * 10),
|
|
|
|
|
50,
|
|
|
|
|
);
|
|
|
|
|
pipeline.emit_event(event).await.ok();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pipeline
|
|
|
|
|
})
|
|
|
|
|
},
|
2026-01-11 21:32:56 +00:00
|
|
|
|pipeline| async move { black_box(pipeline.get_top_agents(60).await.ok()) },
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
criterion::BatchSize::SmallInput,
|
|
|
|
|
);
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
criterion_group!(
|
|
|
|
|
benches,
|
|
|
|
|
pipeline_emit_event,
|
|
|
|
|
pipeline_filter_events,
|
|
|
|
|
pipeline_get_error_rate,
|
|
|
|
|
pipeline_get_top_agents
|
|
|
|
|
);
|
|
|
|
|
criterion_main!(benches);
|