feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
use vapora_llm_router::{CostRanker, ProviderConfig};
|
|
|
|
|
|
|
|
|
|
fn create_provider_configs() -> Vec<(String, ProviderConfig)> {
|
|
|
|
|
vec![
|
|
|
|
|
(
|
|
|
|
|
"claude".to_string(),
|
|
|
|
|
ProviderConfig {
|
|
|
|
|
enabled: true,
|
|
|
|
|
api_key: None,
|
|
|
|
|
url: None,
|
|
|
|
|
model: "claude-opus-4-5".to_string(),
|
|
|
|
|
max_tokens: 4096,
|
|
|
|
|
temperature: 0.7,
|
|
|
|
|
cost_per_1m_input: 3.0, // $3 per 1M input
|
|
|
|
|
cost_per_1m_output: 15.0, // $15 per 1M output
|
|
|
|
|
},
|
|
|
|
|
),
|
|
|
|
|
(
|
|
|
|
|
"gpt4".to_string(),
|
|
|
|
|
ProviderConfig {
|
|
|
|
|
enabled: true,
|
|
|
|
|
api_key: None,
|
|
|
|
|
url: None,
|
|
|
|
|
model: "gpt-4".to_string(),
|
|
|
|
|
max_tokens: 4096,
|
|
|
|
|
temperature: 0.7,
|
|
|
|
|
cost_per_1m_input: 2.5,
|
|
|
|
|
cost_per_1m_output: 10.0,
|
|
|
|
|
},
|
|
|
|
|
),
|
|
|
|
|
(
|
|
|
|
|
"gemini".to_string(),
|
|
|
|
|
ProviderConfig {
|
|
|
|
|
enabled: true,
|
|
|
|
|
api_key: None,
|
|
|
|
|
url: None,
|
|
|
|
|
model: "gemini-pro".to_string(),
|
|
|
|
|
max_tokens: 4096,
|
|
|
|
|
temperature: 0.7,
|
|
|
|
|
cost_per_1m_input: 0.30,
|
|
|
|
|
cost_per_1m_output: 1.20,
|
|
|
|
|
},
|
|
|
|
|
),
|
|
|
|
|
(
|
|
|
|
|
"ollama".to_string(),
|
|
|
|
|
ProviderConfig {
|
|
|
|
|
enabled: true,
|
|
|
|
|
api_key: None,
|
|
|
|
|
url: Some("http://localhost:11434".to_string()),
|
|
|
|
|
model: "llama2".to_string(),
|
|
|
|
|
max_tokens: 4096,
|
|
|
|
|
temperature: 0.7,
|
|
|
|
|
cost_per_1m_input: 0.0,
|
|
|
|
|
cost_per_1m_output: 0.0,
|
|
|
|
|
},
|
|
|
|
|
),
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_cost_estimation_accuracy() {
|
|
|
|
|
let config = ProviderConfig {
|
|
|
|
|
enabled: true,
|
|
|
|
|
api_key: None,
|
|
|
|
|
url: None,
|
|
|
|
|
model: "test".to_string(),
|
|
|
|
|
max_tokens: 4096,
|
|
|
|
|
temperature: 0.7,
|
|
|
|
|
cost_per_1m_input: 1.0, // $1 per 1M input
|
|
|
|
|
cost_per_1m_output: 2.0, // $2 per 1M output
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// 1000 input + 500 output tokens
|
|
|
|
|
let cost = CostRanker::estimate_cost(&config, 1000, 500);
|
|
|
|
|
// (1000 * 1 / 1M) * 100 + (500 * 2 / 1M) * 100 = 0.1 + 0.1 = 0.2 cents ≈ 0
|
|
|
|
|
assert!(cost <= 1); // Small rounding acceptable
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_efficiency_ranking_prioritizes_value() {
|
|
|
|
|
let configs = create_provider_configs();
|
|
|
|
|
let ranked = CostRanker::rank_by_efficiency(configs, "coding", 10000, 2000);
|
|
|
|
|
|
|
|
|
|
assert_eq!(ranked.len(), 4);
|
|
|
|
|
// Ollama should rank first (free + decent quality)
|
|
|
|
|
assert_eq!(ranked[0].provider, "ollama");
|
|
|
|
|
|
|
|
|
|
// Claude should rank last (most expensive)
|
|
|
|
|
assert_eq!(ranked[ranked.len() - 1].provider, "claude");
|
|
|
|
|
|
|
|
|
|
// Efficiency should be descending
|
|
|
|
|
for i in 1..ranked.len() {
|
|
|
|
|
assert!(
|
|
|
|
|
ranked[i - 1].cost_efficiency >= ranked[i].cost_efficiency,
|
|
|
|
|
"Efficiency should be descending"
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_cost_ranking_cheapest_first() {
|
|
|
|
|
let configs = create_provider_configs();
|
|
|
|
|
let ranked = CostRanker::rank_by_cost(configs, 10000, 2000);
|
|
|
|
|
|
|
|
|
|
assert_eq!(ranked.len(), 4);
|
|
|
|
|
// Ollama (free) should be first
|
|
|
|
|
assert_eq!(ranked[0].provider, "ollama");
|
|
|
|
|
assert_eq!(ranked[0].estimated_cost_cents, 0);
|
|
|
|
|
|
|
|
|
|
// Costs should be ascending
|
|
|
|
|
for i in 1..ranked.len() {
|
|
|
|
|
assert!(
|
|
|
|
|
ranked[i - 1].estimated_cost_cents <= ranked[i].estimated_cost_cents,
|
|
|
|
|
"Costs should be ascending"
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_quality_score_differentiation() {
|
|
|
|
|
let claude_quality = CostRanker::get_quality_score("claude", "coding", None);
|
|
|
|
|
let gpt4_quality = CostRanker::get_quality_score("gpt4", "coding", None);
|
|
|
|
|
let gemini_quality = CostRanker::get_quality_score("gemini", "coding", None);
|
|
|
|
|
let ollama_quality = CostRanker::get_quality_score("ollama", "coding", None);
|
|
|
|
|
|
|
|
|
|
// Quality should reflect realistic differences
|
|
|
|
|
assert!(claude_quality > gpt4_quality);
|
|
|
|
|
assert!(gpt4_quality > gemini_quality);
|
|
|
|
|
assert!(gemini_quality > ollama_quality);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_cost_benefit_ratio_ordering() {
|
|
|
|
|
let configs = create_provider_configs();
|
|
|
|
|
let ratios = CostRanker::cost_benefit_ratio(configs, "coding", 5000, 1000);
|
|
|
|
|
|
|
|
|
|
assert_eq!(ratios.len(), 4);
|
|
|
|
|
// First item should have best efficiency
|
|
|
|
|
let best = &ratios[0];
|
|
|
|
|
let worst = &ratios[ratios.len() - 1];
|
2026-01-11 21:32:56 +00:00
|
|
|
assert!(
|
|
|
|
|
best.2 >= worst.2,
|
|
|
|
|
"First should have better efficiency than last"
|
|
|
|
|
);
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_cost_calculation_with_large_tokens() {
|
|
|
|
|
let configs = create_provider_configs();
|
|
|
|
|
let ranked = CostRanker::rank_by_cost(configs, 1_000_000, 100_000);
|
|
|
|
|
|
|
|
|
|
// For claude: (1M * $3) + (100k * $15/1M) = $3 + $1.50 = $4.50 = 450 cents
|
|
|
|
|
let claude_cost = ranked
|
|
|
|
|
.iter()
|
|
|
|
|
.find(|s| s.provider == "claude")
|
|
|
|
|
.unwrap()
|
|
|
|
|
.estimated_cost_cents;
|
|
|
|
|
assert!(claude_cost > 400); // Approximately $4.50
|
|
|
|
|
|
|
|
|
|
// For ollama: $0
|
|
|
|
|
let ollama_cost = ranked
|
|
|
|
|
.iter()
|
|
|
|
|
.find(|s| s.provider == "ollama")
|
|
|
|
|
.unwrap()
|
|
|
|
|
.estimated_cost_cents;
|
|
|
|
|
assert_eq!(ollama_cost, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_efficiency_with_fallback_strategy() {
|
|
|
|
|
let configs = create_provider_configs();
|
|
|
|
|
|
|
|
|
|
// High-quality task (e.g., architecture) - use best
|
|
|
|
|
let premium = CostRanker::rank_by_efficiency(configs.clone(), "architecture", 5000, 2000);
|
|
|
|
|
// Top provider should have reasonable quality score
|
|
|
|
|
assert!(premium[0].quality_score >= 0.75);
|
|
|
|
|
|
|
|
|
|
// Low-cost task (e.g., simple formatting) - use cheap
|
|
|
|
|
let budget = CostRanker::rank_by_cost(configs.clone(), 1000, 500);
|
|
|
|
|
// Ollama should be in the zero-cost group (first position or tied for first)
|
|
|
|
|
let ollama_index = budget.iter().position(|s| s.provider == "ollama").unwrap();
|
2026-01-11 21:32:56 +00:00
|
|
|
assert!(
|
|
|
|
|
ollama_index == 0
|
|
|
|
|
|| budget[0].estimated_cost_cents == budget[ollama_index].estimated_cost_cents
|
|
|
|
|
);
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_empty_provider_list() {
|
|
|
|
|
let ranked = CostRanker::rank_by_efficiency(Vec::new(), "coding", 5000, 1000);
|
|
|
|
|
assert_eq!(ranked.len(), 0);
|
|
|
|
|
|
|
|
|
|
let ranked_cost = CostRanker::rank_by_cost(Vec::new(), 5000, 1000);
|
|
|
|
|
assert_eq!(ranked_cost.len(), 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_single_provider() {
|
|
|
|
|
let single = vec![(
|
|
|
|
|
"ollama".to_string(),
|
|
|
|
|
ProviderConfig {
|
|
|
|
|
enabled: true,
|
|
|
|
|
api_key: None,
|
|
|
|
|
url: Some("http://localhost:11434".to_string()),
|
|
|
|
|
model: "llama2".to_string(),
|
|
|
|
|
max_tokens: 4096,
|
|
|
|
|
temperature: 0.7,
|
|
|
|
|
cost_per_1m_input: 0.0,
|
|
|
|
|
cost_per_1m_output: 0.0,
|
|
|
|
|
},
|
|
|
|
|
)];
|
|
|
|
|
|
|
|
|
|
let ranked = CostRanker::rank_by_efficiency(single.clone(), "coding", 1000, 500);
|
|
|
|
|
assert_eq!(ranked.len(), 1);
|
|
|
|
|
assert_eq!(ranked[0].provider, "ollama");
|
|
|
|
|
|
|
|
|
|
let ranked_cost = CostRanker::rank_by_cost(single, 1000, 500);
|
|
|
|
|
assert_eq!(ranked_cost.len(), 1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_zero_token_cost() {
|
|
|
|
|
let config = ProviderConfig {
|
|
|
|
|
enabled: true,
|
|
|
|
|
api_key: None,
|
|
|
|
|
url: None,
|
|
|
|
|
model: "test".to_string(),
|
|
|
|
|
max_tokens: 4096,
|
|
|
|
|
temperature: 0.7,
|
|
|
|
|
cost_per_1m_input: 1.0,
|
|
|
|
|
cost_per_1m_output: 2.0,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Zero tokens should cost zero
|
|
|
|
|
let cost = CostRanker::estimate_cost(&config, 0, 0);
|
|
|
|
|
assert_eq!(cost, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_efficiency_division_by_zero_protection() {
|
|
|
|
|
// Even free providers shouldn't cause division errors
|
|
|
|
|
let configs = create_provider_configs();
|
|
|
|
|
let ranked = CostRanker::rank_by_efficiency(configs, "coding", 5000, 1000);
|
|
|
|
|
|
|
|
|
|
// All should have valid efficiency scores
|
|
|
|
|
for score in ranked {
|
|
|
|
|
assert!(score.cost_efficiency.is_finite());
|
|
|
|
|
assert!(score.cost_efficiency >= 0.0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_cost_accuracy_matches_provider_rates() {
|
|
|
|
|
let claude_config = ProviderConfig {
|
|
|
|
|
enabled: true,
|
|
|
|
|
api_key: None,
|
|
|
|
|
url: None,
|
|
|
|
|
model: "claude-opus-4-5".to_string(),
|
|
|
|
|
max_tokens: 4096,
|
|
|
|
|
temperature: 0.7,
|
|
|
|
|
cost_per_1m_input: 3.0,
|
|
|
|
|
cost_per_1m_output: 15.0,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// 1M input tokens = $3.00 = 300 cents
|
|
|
|
|
let cost_1m_input = CostRanker::estimate_cost(&claude_config, 1_000_000, 0);
|
|
|
|
|
assert_eq!(cost_1m_input, 300);
|
|
|
|
|
|
|
|
|
|
// 1M output tokens = $15.00 = 1500 cents
|
|
|
|
|
let cost_1m_output = CostRanker::estimate_cost(&claude_config, 0, 1_000_000);
|
|
|
|
|
assert_eq!(cost_1m_output, 1500);
|
|
|
|
|
|
|
|
|
|
// Combined
|
|
|
|
|
let cost_combined = CostRanker::estimate_cost(&claude_config, 1_000_000, 1_000_000);
|
|
|
|
|
assert_eq!(cost_combined, 1800);
|
|
|
|
|
}
|