298 lines
6.1 KiB
Markdown
Raw Normal View History

feat: Phase 5.3 - Multi-Agent Learning Infrastructure Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
# VAPORA Workspace for Provisioning
## Multi-Agent Multi-IA Platform Deployment
**Version**: 0.2.0
**Status**: Specification + Structure (Ready for Implementation)
This workspace contains all configuration for deploying VAPORA using Provisioning.
---
## 📁 Structure
```
vapora-wrksp/
├── workspace.toml # Workspace configuration
├── kcl/ # Infrastructure-as-Code (KCL schemas)
│ ├── cluster.k # K8s cluster definition
│ ├── services.k # Microservices
│ ├── storage.k # Databases + storage
│ ├── agents.k # Agent pools
│ └── multi-ia.k # LLM Router configuration
├── taskservs/ # Taskserv definitions (TOML)
│ ├── vapora-backend.toml
│ ├── vapora-frontend.toml
│ ├── vapora-agents.toml
│ ├── vapora-mcp-gateway.toml
│ └── vapora-llm-router.toml
├── workflows/ # Batch operations
│ ├── deploy-full-stack.yaml
│ ├── scale-agents.yaml
│ ├── upgrade-vapora.yaml
│ └── disaster-recovery.yaml
└── README.md # This file
```
---
## 🚀 Quick Start
### 1. Prerequisites
```bash
# Install Provisioning
./vapora-install.sh
# Verify installation
provisioning --version
# Ensure kubectl access
kubectl cluster-info
```
### 2. Deploy Cluster
```bash
cd provisioning/vapora-wrksp
# Create K8s cluster from KCL
provisioning cluster create --config kcl/cluster.k
# This will:
# - Deploy K3s or RKE2 (auto-detect)
# - Install Istio service mesh
# - Install Rook Ceph for storage
# - Set up monitoring (Prometheus + Grafana)
```
### 3. Deploy Full Stack
```bash
# Deploy all VAPORA services
provisioning workflow run workflows/deploy-full-stack.yaml
# This will:
# - Deploy SurrealDB (3 replicas)
# - Deploy NATS JetStream (3 replicas)
# - Deploy Redis
# - Deploy Axum backend (3 replicas)
# - Deploy Leptos frontend (2 replicas)
# - Deploy Agent Runtime (3 replicas)
# - Deploy MCP Gateway (2 replicas)
# - Deploy LLM Router (2 replicas)
# - Initialize database
# - Configure ingress
```
### 4. Verify Deployment
```bash
# Check all services
provisioning health-check --services all
# Get status
provisioning taskserv list
# View logs
provisioning logs tail -f vapora-backend
# Access frontend
open https://vapora.example.com
```
### 5. Scale Agents
```bash
# Scale developer agents to 10
provisioning taskserv scale vapora-agents --agent developer --replicas 10
# View autoscaling status
provisioning taskserv autoscale status vapora-agents
```
---
## 📋 Configuration
### workspace.toml
Master configuration for entire deployment:
- Cluster settings
- Agent pool sizes
- LLM providers
- Monitoring & scaling
- Backup policies
Edit this file to customize:
```toml
[agents]
developer = { min = 5, max = 20 } # Scale developers to 20 max
[llm_router]
warn_threshold_daily = 5000 # Alert if daily LLM cost > $50
```
### Taskservs
Each taskserv (in `taskservs/`) defines:
- Source repository
- Build configuration
- Deployment resources
- Health checks
- Scaling policies
- Environment variables
- Secrets
Customize per-service as needed.
---
## 🔧 Common Operations
### Deploy New Version
```bash
# Update image version in workspace.toml or taskserv
# Then upgrade service:
provisioning taskserv upgrade vapora-backend --image vapora/backend:0.3.0
# This uses rolling update strategy (no downtime)
```
### Rollback Service
```bash
provisioning taskserv rollback vapora-backend --to-version 0.2.0
```
### View Agent Logs
```bash
provisioning logs tail -f vapora-agents --agent developer-001
```
### Access Database
```bash
# Port-forward to SurrealDB
kubectl port-forward -n vapora-system svc/surrealdb 8000:8000
# Then access at http://localhost:8000
```
### Monitor Costs
```bash
# View LLM usage & costs
provisioning metrics llm-router --daily
# Output shows:
# - Cost per provider
# - Tokens used per agent
# - Cost per task type
```
---
## 🎯 Workflows
Pre-built batch operations in `workflows/`:
### deploy-full-stack.yaml
Complete deployment from scratch (1 hour)
### scale-agents.yaml
Dynamic agent scaling based on queue depth
### upgrade-vapora.yaml
Rolling upgrade of all VAPORA services
### disaster-recovery.yaml
Restore from backups and verify
---
## 🔒 Security
VAPORA deployment includes:
- **mTLS**: Mutual TLS between all services (Istio)
- **Network Policies**: Namespace isolation
- **RBAC**: Kubernetes role-based access
- **Secrets**: RustyVault integration
- **Audit Logs**: Full audit trail via Cedar
---
## 📊 Monitoring
Post-deployment, access:
- **Grafana Dashboard**: `https://vapora.example.com/grafana`
- Agent health & queue depth
- API latency & error rates
- LLM costs & usage
- **Prometheus**: `https://vapora.example.com:9090`
- Raw metrics scraping
- **Logs**: `provisioning logs tail vapora-backend`
---
## 🆘 Troubleshooting
### Pods not starting?
```bash
kubectl describe pod -n vapora-system <pod-name>
provisioning logs tail vapora-backend
```
### Service unavailable?
```bash
# Check health
provisioning health-check vapora-backend
# Check ingress
kubectl get ingress -n vapora-system
# Check Istio VirtualService
kubectl get vs -n vapora-system
```
### Database connection issues?
```bash
# Check SurrealDB
provisioning logs tail vapora-system surrealdb
# Port-forward and test
kubectl port-forward svc/surrealdb 8000:8000
curl http://localhost:8000/health
```
---
## 📚 References
- **Workspace Configuration**: `workspace.toml`
- **Full Architecture**: `../../guides/core/VAPORA-ARCHITECTURE-V2.md`
2026-01-12 03:36:55 +00:00
- **Provisioning Integration**: `../provisioning-integration.md`
feat: Phase 5.3 - Multi-Agent Learning Infrastructure Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
- **KCL Schemas**: Read `.k` files in `kcl/` directory
- **Taskserv Format**: Read `.toml` files in `taskservs/` directory
---
## 🚀 Next Steps
1. ✅ Review `workspace.toml` and customize
2. ✅ Run `provisioning cluster create`
3. ✅ Run `provisioning workflow run deploy-full-stack.yaml`
4. ✅ Access VAPORA at `https://vapora.example.com`
5. ✅ Scale agents as needed for your workload
---
**Version**: 0.2.0
**Status**: Ready for Implementation
**Maintained**: By VAPORA Team