feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
# VAPORA v1.0 - Quick Start Deployment
|
|
|
|
|
|
|
|
|
|
**5-Minute Production Deployment Guide**
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## Prerequisites Check
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
# Verify you have these tools
|
|
|
|
|
kubectl version --client # Kubernetes CLI
|
|
|
|
|
docker --version # Docker for building images
|
|
|
|
|
nu --version # Nushell for scripts
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## Step 1: Build Docker Images (5 minutes)
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
# From project root
|
|
|
|
|
|
|
|
|
|
# Build all images and push to Docker Hub
|
|
|
|
|
nu scripts/build-docker.nu --registry docker.io --tag v0.1.0 --push
|
|
|
|
|
|
|
|
|
|
# Or build locally (no push)
|
|
|
|
|
nu scripts/build-docker.nu
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
**Output**: 4 Docker images built (~175MB total)
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## Step 2: Configure Secrets (2 minutes)
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
# Edit secrets file
|
|
|
|
|
nano kubernetes/03-secrets.yaml
|
|
|
|
|
|
|
|
|
|
# Replace these values:
|
|
|
|
|
# - jwt-secret: $(openssl rand -base64 32)
|
|
|
|
|
# - anthropic-api-key: sk-ant-xxxxx
|
|
|
|
|
# - openai-api-key: sk-xxxxx
|
|
|
|
|
# - surrealdb-pass: $(openssl rand -base64 32)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
**NEVER commit this file with real secrets!**
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## Step 3: Configure Ingress (1 minute)
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
# Edit ingress file
|
|
|
|
|
nano kubernetes/08-ingress.yaml
|
|
|
|
|
|
|
|
|
|
# Update this line:
|
|
|
|
|
# - host: vapora.yourdomain.com # Change to your domain
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## Step 4: Deploy to Kubernetes (3 minutes)
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
# Dry run to validate
|
|
|
|
|
nu scripts/deploy-k8s.nu --dry-run
|
|
|
|
|
|
|
|
|
|
# Deploy for real
|
|
|
|
|
nu scripts/deploy-k8s.nu
|
|
|
|
|
|
|
|
|
|
# Wait for all pods to be ready
|
|
|
|
|
kubectl wait --for=condition=ready pod -l app -n vapora --timeout=300s
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
**Output**: 11 pods running (2 backend, 2 frontend, 3 agents, 1 mcp, 1 db, 1 nats)
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## Step 5: Verify Deployment (2 minutes)
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
# Check all pods are running
|
|
|
|
|
kubectl get pods -n vapora
|
|
|
|
|
|
|
|
|
|
# Check services
|
|
|
|
|
kubectl get svc -n vapora
|
|
|
|
|
|
|
|
|
|
# Get ingress IP/hostname
|
|
|
|
|
kubectl get ingress -n vapora
|
|
|
|
|
|
|
|
|
|
# Test health endpoints
|
|
|
|
|
kubectl exec -n vapora deploy/vapora-backend -- curl -s http://localhost:8080/health
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## Step 6: Access VAPORA
|
|
|
|
|
|
|
|
|
|
1. **Configure DNS**: Point your domain to ingress IP
|
|
|
|
|
2. **Access UI**: `https://vapora.yourdomain.com`
|
|
|
|
|
3. **Check health**: `https://vapora.yourdomain.com/api/v1/health`
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## Troubleshooting
|
|
|
|
|
|
2026-01-12 03:17:04 +00:00
|
|
|
### Pods not starting
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
kubectl describe pod -n vapora <pod-name>
|
|
|
|
|
kubectl logs -n vapora <pod-name>
|
|
|
|
|
```
|
|
|
|
|
|
2026-01-12 03:17:04 +00:00
|
|
|
### Can't connect to database
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
kubectl logs -n vapora surrealdb-0
|
|
|
|
|
kubectl exec -n vapora deploy/vapora-backend -- curl http://surrealdb:8000/health
|
|
|
|
|
```
|
|
|
|
|
|
2026-01-12 03:17:04 +00:00
|
|
|
### Image pull errors
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
# Check if images exist
|
|
|
|
|
docker images | grep vapora
|
|
|
|
|
|
|
|
|
|
# Create registry secret
|
|
|
|
|
kubectl create secret docker-registry regcred \
|
|
|
|
|
-n vapora \
|
|
|
|
|
--docker-server=docker.io \
|
|
|
|
|
--docker-username=<user> \
|
|
|
|
|
--docker-password=<pass>
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## Alternative: Provisioning Deployment
|
|
|
|
|
|
|
|
|
|
For advanced deployment with service mesh and auto-scaling:
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
cd provisioning/vapora-wrksp
|
|
|
|
|
|
|
|
|
|
# Validate configuration
|
|
|
|
|
nu scripts/validate-provisioning.nu
|
|
|
|
|
|
|
|
|
|
# Deploy full stack
|
|
|
|
|
provisioning workflow run workflows/deploy-full-stack.yaml
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
See: [`provisioning-integration/README.md`](provisioning-integration/README.md)
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## Next Steps
|
|
|
|
|
|
|
|
|
|
- [ ] Set up monitoring (Prometheus + Grafana)
|
|
|
|
|
- [ ] Configure TLS certificates (cert-manager)
|
|
|
|
|
- [ ] Set up backups for SurrealDB
|
|
|
|
|
- [ ] Configure HPA (Horizontal Pod Autoscaler)
|
|
|
|
|
- [ ] Enable log aggregation
|
|
|
|
|
- [ ] Test agent workflows
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## Full Documentation
|
|
|
|
|
|
|
|
|
|
- **Comprehensive Guide**: [`DEPLOYMENT.md`](DEPLOYMENT.md)
|
|
|
|
|
- **K8s README**: [`kubernetes/README.md`](kubernetes/README.md)
|
|
|
|
|
- **Provisioning Guide**: [`provisioning-integration/README.md`](provisioning-integration/README.md)
|
|
|
|
|
- **Project Overview**: [`PROJECT_COMPLETION_REPORT.md`](PROJECT_COMPLETION_REPORT.md)
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## Quick Commands Reference
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
# Build images
|
|
|
|
|
nu scripts/build-docker.nu --push
|
|
|
|
|
|
|
|
|
|
# Deploy
|
|
|
|
|
nu scripts/deploy-k8s.nu
|
|
|
|
|
|
|
|
|
|
# Validate
|
|
|
|
|
nu scripts/validate-deployment.nu
|
|
|
|
|
|
|
|
|
|
# Validate Provisioning
|
|
|
|
|
nu scripts/validate-provisioning.nu
|
|
|
|
|
|
|
|
|
|
# Check status
|
|
|
|
|
kubectl get all -n vapora
|
|
|
|
|
|
|
|
|
|
# View logs
|
|
|
|
|
kubectl logs -n vapora -l app=vapora-backend -f
|
|
|
|
|
|
|
|
|
|
# Scale agents
|
|
|
|
|
kubectl scale deployment vapora-agents -n vapora --replicas=5
|
|
|
|
|
|
|
|
|
|
# Rollback
|
|
|
|
|
kubectl rollout undo deployment/vapora-backend -n vapora
|
|
|
|
|
|
|
|
|
|
# Uninstall
|
|
|
|
|
kubectl delete namespace vapora
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
**VAPORA v1.0** - Production Ready ✅
|
|
|
|
|
**Total Deployment Time**: ~15 minutes
|
|
|
|
|
**Status**: All 5 phases completed
|