87 lines
2.1 KiB
TOML
Raw Normal View History

feat: Phase 5.3 - Multi-Agent Learning Infrastructure Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
[workspace]
name = "vapora"
version = "0.2.0"
description = "Multi-agent multi-IA software development platform"
[cluster]
name = "vapora-cluster"
cloud_provider = "auto" # auto-detect or specify: aws, gcp, azure, local
kcl_schema = "kcl/cluster.k"
min_nodes = 5
max_nodes = 50
[taskservs]
backend = "taskservs/vapora-backend.toml"
frontend = "taskservs/vapora-frontend.toml"
agents = "taskservs/vapora-agents.toml"
mcp_gateway = "taskservs/vapora-mcp-gateway.toml"
llm_router = "taskservs/vapora-llm-router.toml"
[storage.surrealdb]
namespace = "vapora-system"
replicas = 3
storage_size = "50Gi"
storage_class = "rook-ceph"
[storage.redis]
namespace = "vapora-system"
storage_size = "20Gi"
storage_class = "ssd"
[storage.nats]
namespace = "vapora-system"
replicas = 3
storage_size = "30Gi"
storage_class = "rook-ceph"
feat: Phase 5.3 - Multi-Agent Learning Infrastructure Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
[monitoring]
prometheus = true
grafana = true
loki = true
[security]
mtls_enabled = true
network_policies = true
rbac = true
vault_integration = true
[ingress]
gateway = "istio"
domain = "vapora.example.com"
tls = true
rate_limit = 1000 # req/sec
[scaling]
enable_hpa = true
cpu_target = 70
memory_target = 80
[agents]
# Initial agent pool sizes
architect = { min = 2, max = 5, model = "claude-opus-4" }
developer = { min = 5, max = 20, model = "claude-sonnet-4" }
code_reviewer = { min = 3, max = 10, model = "claude-sonnet-4" }
tester = { min = 3, max = 10, model = "claude-sonnet-4" }
documenter = { min = 2, max = 5, model = "gpt-4" }
marketer = { min = 1, max = 3, model = "claude-sonnet-4" }
presenter = { min = 1, max = 3, model = "claude-sonnet-4" }
devops = { min = 2, max = 5, model = "claude-sonnet-4" }
monitor = { min = 2, max = 5, model = "gemini-pro" }
security = { min = 2, max = 5, model = "claude-opus-4" }
project_manager = { min = 1, max = 2, model = "claude-sonnet-4" }
decision_maker = { min = 1, max = 1, model = "claude-opus-4" }
orchestrator = { min = 2, max = 5, model = "claude-opus-4" }
[llm_router]
default_fallback_order = ["claude", "openai", "gemini", "ollama"]
cost_tracking = true
warn_threshold_daily = 1000 # cents ($10)
[environment]
RUST_LOG = "debug,vapora=trace"
[backup]
enabled = true
schedule = "daily"
retention_days = 30