feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
use chrono::{Duration, Utc};
|
2026-01-11 21:32:56 +00:00
|
|
|
use vapora_agents::{AgentScoringService, ExecutionData, ProfileAdapter, TaskTypeExpertise};
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
use vapora_swarm::messages::AgentProfile;
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_end_to_end_learning_flow() {
|
|
|
|
|
// Simulate historical executions for agent
|
|
|
|
|
let now = Utc::now();
|
|
|
|
|
let executions: Vec<ExecutionData> = (0..20)
|
|
|
|
|
.map(|i| ExecutionData {
|
|
|
|
|
timestamp: now - Duration::days(i),
|
|
|
|
|
duration_ms: 100 + (i as u64 * 10),
|
|
|
|
|
success: i < 18, // 18 successes out of 20 = 90%
|
|
|
|
|
})
|
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
|
|
// Calculate expertise from executions
|
|
|
|
|
let expertise = TaskTypeExpertise::from_executions(executions, "coding");
|
|
|
|
|
assert!((expertise.success_rate - 0.9).abs() < 0.01);
|
|
|
|
|
assert_eq!(expertise.total_executions, 20);
|
|
|
|
|
|
|
|
|
|
// Create learning profile for agent
|
|
|
|
|
let mut profile = ProfileAdapter::create_learning_profile("agent-1".to_string());
|
|
|
|
|
|
|
|
|
|
// Add expertise to profile
|
|
|
|
|
profile = ProfileAdapter::add_task_type_expertise(profile, "coding".to_string(), expertise);
|
|
|
|
|
|
|
|
|
|
// Verify expertise is stored
|
|
|
|
|
assert_eq!(profile.get_task_type_score("coding"), 0.9);
|
|
|
|
|
assert!(profile.get_confidence("coding") > 0.9); // 20/20 is high confidence
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_learning_profile_improves_over_time() {
|
|
|
|
|
let now = Utc::now();
|
|
|
|
|
|
|
|
|
|
// Initial executions: 50% success
|
|
|
|
|
let initial_execs: Vec<ExecutionData> = (0..10)
|
|
|
|
|
.map(|i| ExecutionData {
|
|
|
|
|
timestamp: now - Duration::days(i * 2),
|
|
|
|
|
duration_ms: 100,
|
|
|
|
|
success: i < 5,
|
|
|
|
|
})
|
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
|
|
let mut initial_expertise = TaskTypeExpertise::from_executions(initial_execs, "coding");
|
|
|
|
|
assert!((initial_expertise.success_rate - 0.5).abs() < 0.01);
|
|
|
|
|
|
|
|
|
|
// New successful execution
|
|
|
|
|
let new_exec = ExecutionData {
|
|
|
|
|
timestamp: now,
|
|
|
|
|
duration_ms: 100,
|
|
|
|
|
success: true,
|
|
|
|
|
};
|
|
|
|
|
initial_expertise.update_with_execution(&new_exec);
|
|
|
|
|
|
|
|
|
|
// Expertise should improve
|
|
|
|
|
assert!(initial_expertise.success_rate > 0.5);
|
|
|
|
|
assert_eq!(initial_expertise.total_executions, 11);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_agent_scoring_with_learning() {
|
|
|
|
|
// Create candidate agents
|
|
|
|
|
let candidates = vec![
|
|
|
|
|
AgentProfile {
|
|
|
|
|
id: "agent-a".to_string(),
|
|
|
|
|
roles: vec!["developer".to_string()],
|
|
|
|
|
capabilities: vec!["coding".to_string()],
|
|
|
|
|
current_load: 0.3,
|
|
|
|
|
success_rate: 0.8,
|
|
|
|
|
availability: true,
|
|
|
|
|
},
|
|
|
|
|
AgentProfile {
|
|
|
|
|
id: "agent-b".to_string(),
|
|
|
|
|
roles: vec!["developer".to_string()],
|
|
|
|
|
capabilities: vec!["coding".to_string()],
|
|
|
|
|
current_load: 0.1,
|
|
|
|
|
success_rate: 0.8,
|
|
|
|
|
availability: true,
|
|
|
|
|
},
|
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
// Create learning profiles
|
|
|
|
|
let mut profile_a = ProfileAdapter::create_learning_profile("agent-a".to_string());
|
|
|
|
|
profile_a = ProfileAdapter::add_task_type_expertise(
|
|
|
|
|
profile_a,
|
|
|
|
|
"coding".to_string(),
|
|
|
|
|
TaskTypeExpertise {
|
|
|
|
|
success_rate: 0.95,
|
|
|
|
|
total_executions: 50,
|
|
|
|
|
recent_success_rate: 0.95,
|
|
|
|
|
avg_duration_ms: 100.0,
|
|
|
|
|
learning_curve: Vec::new(),
|
|
|
|
|
confidence: 1.0,
|
|
|
|
|
},
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
let mut profile_b = ProfileAdapter::create_learning_profile("agent-b".to_string());
|
|
|
|
|
profile_b = ProfileAdapter::add_task_type_expertise(
|
|
|
|
|
profile_b,
|
|
|
|
|
"coding".to_string(),
|
|
|
|
|
TaskTypeExpertise {
|
|
|
|
|
success_rate: 0.70,
|
|
|
|
|
total_executions: 30,
|
|
|
|
|
recent_success_rate: 0.70,
|
|
|
|
|
avg_duration_ms: 120.0,
|
|
|
|
|
learning_curve: Vec::new(),
|
|
|
|
|
confidence: 1.0,
|
|
|
|
|
},
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
let learning_profiles = vec![
|
|
|
|
|
("agent-a".to_string(), profile_a),
|
|
|
|
|
("agent-b".to_string(), profile_b),
|
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
// Score agents
|
|
|
|
|
let ranked = AgentScoringService::rank_agents(candidates, "coding", &learning_profiles);
|
|
|
|
|
assert_eq!(ranked.len(), 2);
|
|
|
|
|
|
|
|
|
|
// agent-a should rank higher due to superior expertise despite higher load
|
|
|
|
|
assert_eq!(ranked[0].agent_id, "agent-a");
|
|
|
|
|
assert!(ranked[0].final_score > ranked[1].final_score);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_recency_bias_affects_ranking() {
|
|
|
|
|
let candidates = vec![
|
|
|
|
|
AgentProfile {
|
|
|
|
|
id: "agent-x".to_string(),
|
|
|
|
|
roles: vec!["developer".to_string()],
|
|
|
|
|
capabilities: vec!["coding".to_string()],
|
|
|
|
|
current_load: 0.3,
|
|
|
|
|
success_rate: 0.8,
|
|
|
|
|
availability: true,
|
|
|
|
|
},
|
|
|
|
|
AgentProfile {
|
|
|
|
|
id: "agent-y".to_string(),
|
|
|
|
|
roles: vec!["developer".to_string()],
|
|
|
|
|
capabilities: vec!["coding".to_string()],
|
|
|
|
|
current_load: 0.3,
|
|
|
|
|
success_rate: 0.8,
|
|
|
|
|
availability: true,
|
|
|
|
|
},
|
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
// agent-x has high overall success but recent failures
|
|
|
|
|
let mut profile_x = ProfileAdapter::create_learning_profile("agent-x".to_string());
|
|
|
|
|
profile_x = ProfileAdapter::add_task_type_expertise(
|
|
|
|
|
profile_x,
|
|
|
|
|
"coding".to_string(),
|
|
|
|
|
TaskTypeExpertise {
|
|
|
|
|
success_rate: 0.85,
|
|
|
|
|
total_executions: 40,
|
|
|
|
|
recent_success_rate: 0.60, // Recent poor performance
|
|
|
|
|
avg_duration_ms: 100.0,
|
|
|
|
|
learning_curve: Vec::new(),
|
|
|
|
|
confidence: 1.0,
|
|
|
|
|
},
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
// agent-y has consistent good recent performance
|
|
|
|
|
let mut profile_y = ProfileAdapter::create_learning_profile("agent-y".to_string());
|
|
|
|
|
profile_y = ProfileAdapter::add_task_type_expertise(
|
|
|
|
|
profile_y,
|
|
|
|
|
"coding".to_string(),
|
|
|
|
|
TaskTypeExpertise {
|
|
|
|
|
success_rate: 0.80,
|
|
|
|
|
total_executions: 30,
|
|
|
|
|
recent_success_rate: 0.90, // Recent strong performance
|
|
|
|
|
avg_duration_ms: 110.0,
|
|
|
|
|
learning_curve: Vec::new(),
|
|
|
|
|
confidence: 1.0,
|
|
|
|
|
},
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
let learning_profiles = vec![
|
|
|
|
|
("agent-x".to_string(), profile_x),
|
|
|
|
|
("agent-y".to_string(), profile_y),
|
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
// Rank with recency bias
|
2026-01-11 21:32:56 +00:00
|
|
|
let ranked =
|
|
|
|
|
AgentScoringService::rank_agents_with_recency(candidates, "coding", &learning_profiles);
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
assert_eq!(ranked.len(), 2);
|
|
|
|
|
|
|
|
|
|
// agent-y should rank higher due to recent success despite lower overall rate
|
|
|
|
|
assert_eq!(ranked[0].agent_id, "agent-y");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_confidence_prevents_overfitting() {
|
|
|
|
|
let candidates = vec![
|
|
|
|
|
AgentProfile {
|
|
|
|
|
id: "agent-new".to_string(),
|
|
|
|
|
roles: vec!["developer".to_string()],
|
|
|
|
|
capabilities: vec!["coding".to_string()],
|
|
|
|
|
current_load: 0.0,
|
|
|
|
|
success_rate: 0.8,
|
|
|
|
|
availability: true,
|
|
|
|
|
},
|
|
|
|
|
AgentProfile {
|
|
|
|
|
id: "agent-exp".to_string(),
|
|
|
|
|
roles: vec!["developer".to_string()],
|
|
|
|
|
capabilities: vec!["coding".to_string()],
|
|
|
|
|
current_load: 0.0,
|
|
|
|
|
success_rate: 0.8,
|
|
|
|
|
availability: true,
|
|
|
|
|
},
|
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
// agent-new: High expertise but low confidence (few samples)
|
|
|
|
|
let mut profile_new = ProfileAdapter::create_learning_profile("agent-new".to_string());
|
|
|
|
|
profile_new = ProfileAdapter::add_task_type_expertise(
|
|
|
|
|
profile_new,
|
|
|
|
|
"coding".to_string(),
|
|
|
|
|
TaskTypeExpertise {
|
|
|
|
|
success_rate: 1.0, // Perfect so far
|
|
|
|
|
total_executions: 2,
|
|
|
|
|
recent_success_rate: 1.0,
|
|
|
|
|
avg_duration_ms: 100.0,
|
|
|
|
|
learning_curve: Vec::new(),
|
|
|
|
|
confidence: 0.1, // Low confidence - only 2/20 executions
|
|
|
|
|
},
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
// agent-exp: Slightly lower expertise but high confidence
|
|
|
|
|
let mut profile_exp = ProfileAdapter::create_learning_profile("agent-exp".to_string());
|
|
|
|
|
profile_exp = ProfileAdapter::add_task_type_expertise(
|
|
|
|
|
profile_exp,
|
|
|
|
|
"coding".to_string(),
|
|
|
|
|
TaskTypeExpertise {
|
|
|
|
|
success_rate: 0.95,
|
|
|
|
|
total_executions: 50,
|
|
|
|
|
recent_success_rate: 0.95,
|
|
|
|
|
avg_duration_ms: 100.0,
|
|
|
|
|
learning_curve: Vec::new(),
|
|
|
|
|
confidence: 1.0,
|
|
|
|
|
},
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
let learning_profiles = vec![
|
|
|
|
|
("agent-new".to_string(), profile_new),
|
|
|
|
|
("agent-exp".to_string(), profile_exp),
|
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
let ranked = AgentScoringService::rank_agents(candidates, "coding", &learning_profiles);
|
|
|
|
|
|
2026-01-11 21:46:08 +00:00
|
|
|
// agent-exp should rank higher despite slightly lower expertise due to
|
|
|
|
|
// confidence weighting
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
assert_eq!(ranked[0].agent_id, "agent-exp");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_multiple_task_types_independent() {
|
|
|
|
|
let mut profile = ProfileAdapter::create_learning_profile("agent-1".to_string());
|
|
|
|
|
|
|
|
|
|
// Agent excels at coding
|
|
|
|
|
let coding_exp = TaskTypeExpertise {
|
|
|
|
|
success_rate: 0.95,
|
|
|
|
|
total_executions: 30,
|
|
|
|
|
recent_success_rate: 0.95,
|
|
|
|
|
avg_duration_ms: 100.0,
|
|
|
|
|
learning_curve: Vec::new(),
|
|
|
|
|
confidence: 1.0,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Agent struggles with documentation
|
|
|
|
|
let docs_exp = TaskTypeExpertise {
|
|
|
|
|
success_rate: 0.60,
|
|
|
|
|
total_executions: 20,
|
|
|
|
|
recent_success_rate: 0.65,
|
|
|
|
|
avg_duration_ms: 250.0,
|
|
|
|
|
learning_curve: Vec::new(),
|
|
|
|
|
confidence: 1.0,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
profile = ProfileAdapter::add_task_type_expertise(profile, "coding".to_string(), coding_exp);
|
2026-01-11 21:32:56 +00:00
|
|
|
profile =
|
|
|
|
|
ProfileAdapter::add_task_type_expertise(profile, "documentation".to_string(), docs_exp);
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
|
|
|
|
|
// Verify independence
|
|
|
|
|
assert_eq!(profile.get_task_type_score("coding"), 0.95);
|
|
|
|
|
assert_eq!(profile.get_task_type_score("documentation"), 0.60);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
|
async fn test_coordinator_assignment_with_learning_scores() {
|
|
|
|
|
use std::sync::Arc;
|
2026-01-11 21:46:08 +00:00
|
|
|
|
2026-01-11 21:32:56 +00:00
|
|
|
use vapora_agents::{AgentCoordinator, AgentMetadata, AgentRegistry};
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
|
|
|
|
|
// Create registry with test agents
|
|
|
|
|
let registry = Arc::new(AgentRegistry::new(10));
|
|
|
|
|
|
|
|
|
|
// Register two agents for developer role
|
|
|
|
|
let agent_a = AgentMetadata::new(
|
|
|
|
|
"developer".to_string(),
|
|
|
|
|
"Agent A - Coding Specialist".to_string(),
|
|
|
|
|
"claude".to_string(),
|
|
|
|
|
"claude-opus-4-5".to_string(),
|
|
|
|
|
vec!["coding".to_string(), "testing".to_string()],
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
let agent_b = AgentMetadata::new(
|
|
|
|
|
"developer".to_string(),
|
|
|
|
|
"Agent B - Generalist".to_string(),
|
|
|
|
|
"claude".to_string(),
|
|
|
|
|
"claude-sonnet-4".to_string(),
|
|
|
|
|
vec!["coding".to_string(), "documentation".to_string()],
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
let agent_a_id = agent_a.id.clone();
|
|
|
|
|
let agent_b_id = agent_b.id.clone();
|
|
|
|
|
|
|
|
|
|
registry.register_agent(agent_a).ok();
|
|
|
|
|
registry.register_agent(agent_b).ok();
|
|
|
|
|
|
|
|
|
|
// Create coordinator
|
|
|
|
|
let coordinator = AgentCoordinator::with_registry(registry);
|
|
|
|
|
|
|
|
|
|
// Create learning profiles: Agent A excels at coding, Agent B is mediocre
|
|
|
|
|
let now = Utc::now();
|
|
|
|
|
let agent_a_executions: Vec<ExecutionData> = (0..20)
|
|
|
|
|
.map(|i| ExecutionData {
|
|
|
|
|
timestamp: now - Duration::days(i),
|
|
|
|
|
duration_ms: 100,
|
|
|
|
|
success: i < 19, // 95% success rate
|
|
|
|
|
})
|
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
|
|
let agent_b_executions: Vec<ExecutionData> = (0..20)
|
|
|
|
|
.map(|i| ExecutionData {
|
|
|
|
|
timestamp: now - Duration::days(i),
|
|
|
|
|
duration_ms: 100,
|
|
|
|
|
success: i < 14, // 70% success rate
|
|
|
|
|
})
|
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
|
|
let agent_a_expertise = TaskTypeExpertise::from_executions(agent_a_executions, "coding");
|
|
|
|
|
let agent_b_expertise = TaskTypeExpertise::from_executions(agent_b_executions, "coding");
|
|
|
|
|
|
|
|
|
|
let mut agent_a_profile = ProfileAdapter::create_learning_profile(agent_a_id.clone());
|
2026-01-11 21:32:56 +00:00
|
|
|
agent_a_profile = ProfileAdapter::add_task_type_expertise(
|
|
|
|
|
agent_a_profile,
|
|
|
|
|
"coding".to_string(),
|
|
|
|
|
agent_a_expertise,
|
|
|
|
|
);
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
|
|
|
|
|
let mut agent_b_profile = ProfileAdapter::create_learning_profile(agent_b_id.clone());
|
2026-01-11 21:32:56 +00:00
|
|
|
agent_b_profile = ProfileAdapter::add_task_type_expertise(
|
|
|
|
|
agent_b_profile,
|
|
|
|
|
"coding".to_string(),
|
|
|
|
|
agent_b_expertise,
|
|
|
|
|
);
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
|
|
|
|
|
// Update coordinator with learning profiles
|
|
|
|
|
coordinator
|
|
|
|
|
.update_learning_profile(&agent_a_id, agent_a_profile)
|
|
|
|
|
.ok();
|
|
|
|
|
coordinator
|
|
|
|
|
.update_learning_profile(&agent_b_id, agent_b_profile)
|
|
|
|
|
.ok();
|
|
|
|
|
|
|
|
|
|
// Assign a coding task
|
|
|
|
|
let _task_id = coordinator
|
|
|
|
|
.assign_task(
|
|
|
|
|
"developer",
|
|
|
|
|
"Implement authentication module".to_string(),
|
|
|
|
|
"Create secure login and token validation".to_string(),
|
|
|
|
|
"Security critical".to_string(),
|
|
|
|
|
2,
|
|
|
|
|
)
|
|
|
|
|
.await
|
|
|
|
|
.expect("Should assign task");
|
|
|
|
|
|
|
|
|
|
// Get the registry to verify which agent was selected
|
|
|
|
|
let registry = coordinator.registry();
|
2026-01-11 21:32:56 +00:00
|
|
|
let agent_a_tasks = registry
|
|
|
|
|
.list_all()
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
.iter()
|
|
|
|
|
.find(|a| a.id == agent_a_id)
|
|
|
|
|
.map(|a| a.current_tasks)
|
|
|
|
|
.unwrap_or(0);
|
|
|
|
|
|
2026-01-11 21:32:56 +00:00
|
|
|
let agent_b_tasks = registry
|
|
|
|
|
.list_all()
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
.iter()
|
|
|
|
|
.find(|a| a.id == agent_b_id)
|
|
|
|
|
.map(|a| a.current_tasks)
|
|
|
|
|
.unwrap_or(0);
|
|
|
|
|
|
|
|
|
|
// Agent A (higher expertise in coding) should have been selected
|
2026-01-11 21:32:56 +00:00
|
|
|
assert!(
|
|
|
|
|
agent_a_tasks > 0,
|
|
|
|
|
"Agent A (coding specialist) should have 1+ tasks"
|
|
|
|
|
);
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
assert_eq!(agent_b_tasks, 0, "Agent B (generalist) should have 0 tasks");
|
|
|
|
|
|
|
|
|
|
// Verify learning profiles are stored
|
|
|
|
|
let stored_profiles = coordinator.get_all_learning_profiles();
|
2026-01-11 21:32:56 +00:00
|
|
|
assert!(
|
|
|
|
|
stored_profiles.contains_key(&agent_a_id),
|
|
|
|
|
"Agent A profile should be stored"
|
|
|
|
|
);
|
|
|
|
|
assert!(
|
|
|
|
|
stored_profiles.contains_key(&agent_b_id),
|
|
|
|
|
"Agent B profile should be stored"
|
|
|
|
|
);
|
feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.
## Phase 5.3 Implementation
### Learning Infrastructure (✅ Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows
### Agent Scoring Service (✅ Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency
### KG Integration (✅ Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations
### Agent Assignment Integration (✅ Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock
### Profile Adapter Enhancements (✅ Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning
## Files Modified
### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)
### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService
### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods
## Tests Passing
- learning_profile: 7 tests ✅
- scoring: 5 tests ✅
- profile_adapter: 6 tests ✅
- coordinator: learning-specific tests ✅
## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles
## Key Design Decisions
✅ Recency bias: 7-day half-life with 3x weight for recent performance
✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
✅ KG query limit: 100 recent executions per task-type for performance
✅ Async loading: load_learning_profile_from_kg supports concurrent loads
## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
|
|
|
}
|