167 lines
4.8 KiB
Rust
167 lines
4.8 KiB
Rust
|
|
use chrono::{Duration, Utc};
|
||
|
|
use vapora_agents::{ExecutionData, LearningProfile, TaskTypeExpertise};
|
||
|
|
|
||
|
|
#[test]
|
||
|
|
fn test_per_task_type_expertise() {
|
||
|
|
let mut profile = LearningProfile::new("agent-1".to_string());
|
||
|
|
|
||
|
|
let coding_expertise = TaskTypeExpertise {
|
||
|
|
success_rate: 0.9,
|
||
|
|
total_executions: 20,
|
||
|
|
recent_success_rate: 0.95,
|
||
|
|
avg_duration_ms: 120.0,
|
||
|
|
learning_curve: Vec::new(),
|
||
|
|
confidence: 1.0,
|
||
|
|
};
|
||
|
|
|
||
|
|
profile.set_task_type_expertise("coding".to_string(), coding_expertise);
|
||
|
|
|
||
|
|
assert_eq!(profile.get_task_type_score("coding"), 0.9);
|
||
|
|
assert_eq!(profile.get_task_type_score("documentation"), 0.5); // Default
|
||
|
|
}
|
||
|
|
|
||
|
|
#[test]
|
||
|
|
fn test_recency_bias_weighting() {
|
||
|
|
let now = Utc::now();
|
||
|
|
let executions = vec![
|
||
|
|
ExecutionData {
|
||
|
|
timestamp: now - Duration::hours(1),
|
||
|
|
duration_ms: 100,
|
||
|
|
success: true,
|
||
|
|
},
|
||
|
|
ExecutionData {
|
||
|
|
timestamp: now - Duration::days(8),
|
||
|
|
duration_ms: 100,
|
||
|
|
success: false,
|
||
|
|
},
|
||
|
|
];
|
||
|
|
|
||
|
|
let expertise = TaskTypeExpertise::from_executions(executions, "coding");
|
||
|
|
|
||
|
|
// Recent success should pull average up despite old failure
|
||
|
|
assert!(expertise.recent_success_rate > 0.5);
|
||
|
|
assert!(expertise.recent_success_rate > expertise.success_rate);
|
||
|
|
}
|
||
|
|
|
||
|
|
#[test]
|
||
|
|
fn test_confidence_scaling() {
|
||
|
|
let now = Utc::now();
|
||
|
|
|
||
|
|
// Few executions = low confidence
|
||
|
|
let few_executions = vec![ExecutionData {
|
||
|
|
timestamp: now,
|
||
|
|
duration_ms: 100,
|
||
|
|
success: true,
|
||
|
|
}];
|
||
|
|
let few_expertise = TaskTypeExpertise::from_executions(few_executions, "coding");
|
||
|
|
assert!(few_expertise.confidence < 0.1);
|
||
|
|
|
||
|
|
// Many executions = high confidence
|
||
|
|
let many_executions: Vec<_> = (0..50)
|
||
|
|
.map(|i| ExecutionData {
|
||
|
|
timestamp: now - Duration::hours(i),
|
||
|
|
duration_ms: 100,
|
||
|
|
success: i % 2 == 0,
|
||
|
|
})
|
||
|
|
.collect();
|
||
|
|
let many_expertise = TaskTypeExpertise::from_executions(many_executions, "coding");
|
||
|
|
assert_eq!(many_expertise.confidence, 1.0); // Capped at 1.0
|
||
|
|
}
|
||
|
|
|
||
|
|
#[test]
|
||
|
|
fn test_learning_curve_generation() {
|
||
|
|
let now = Utc::now();
|
||
|
|
let executions = vec![
|
||
|
|
ExecutionData {
|
||
|
|
timestamp: now - Duration::hours(25),
|
||
|
|
duration_ms: 100,
|
||
|
|
success: true,
|
||
|
|
},
|
||
|
|
ExecutionData {
|
||
|
|
timestamp: now - Duration::hours(24),
|
||
|
|
duration_ms: 100,
|
||
|
|
success: true,
|
||
|
|
},
|
||
|
|
ExecutionData {
|
||
|
|
timestamp: now - Duration::hours(1),
|
||
|
|
duration_ms: 100,
|
||
|
|
success: false,
|
||
|
|
},
|
||
|
|
];
|
||
|
|
|
||
|
|
let expertise = TaskTypeExpertise::from_executions(executions, "coding");
|
||
|
|
assert!(!expertise.learning_curve.is_empty());
|
||
|
|
|
||
|
|
// Curve should be chronologically sorted
|
||
|
|
for i in 1..expertise.learning_curve.len() {
|
||
|
|
assert!(
|
||
|
|
expertise.learning_curve[i - 1].0 <= expertise.learning_curve[i].0,
|
||
|
|
"Learning curve must be chronologically sorted"
|
||
|
|
);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
#[test]
|
||
|
|
fn test_execution_update() {
|
||
|
|
let now = Utc::now();
|
||
|
|
let mut expertise = TaskTypeExpertise {
|
||
|
|
success_rate: 0.8,
|
||
|
|
total_executions: 10,
|
||
|
|
recent_success_rate: 0.8,
|
||
|
|
avg_duration_ms: 100.0,
|
||
|
|
learning_curve: Vec::new(),
|
||
|
|
confidence: 0.5,
|
||
|
|
};
|
||
|
|
|
||
|
|
let execution = ExecutionData {
|
||
|
|
timestamp: now,
|
||
|
|
duration_ms: 150,
|
||
|
|
success: true,
|
||
|
|
};
|
||
|
|
|
||
|
|
expertise.update_with_execution(&execution);
|
||
|
|
|
||
|
|
assert_eq!(expertise.total_executions, 11);
|
||
|
|
assert!(expertise.success_rate > 0.8); // Success added
|
||
|
|
assert!(expertise.avg_duration_ms > 100.0); // Duration increased
|
||
|
|
}
|
||
|
|
|
||
|
|
#[test]
|
||
|
|
fn test_multiple_task_types() {
|
||
|
|
let mut profile = LearningProfile::new("agent-1".to_string());
|
||
|
|
|
||
|
|
let coding = TaskTypeExpertise {
|
||
|
|
success_rate: 0.95,
|
||
|
|
total_executions: 20,
|
||
|
|
recent_success_rate: 0.95,
|
||
|
|
avg_duration_ms: 120.0,
|
||
|
|
learning_curve: Vec::new(),
|
||
|
|
confidence: 1.0,
|
||
|
|
};
|
||
|
|
|
||
|
|
let documentation = TaskTypeExpertise {
|
||
|
|
success_rate: 0.75,
|
||
|
|
total_executions: 15,
|
||
|
|
recent_success_rate: 0.80,
|
||
|
|
avg_duration_ms: 200.0,
|
||
|
|
learning_curve: Vec::new(),
|
||
|
|
confidence: 0.75,
|
||
|
|
};
|
||
|
|
|
||
|
|
profile.set_task_type_expertise("coding".to_string(), coding);
|
||
|
|
profile.set_task_type_expertise("documentation".to_string(), documentation);
|
||
|
|
|
||
|
|
assert_eq!(profile.get_task_type_score("coding"), 0.95);
|
||
|
|
assert_eq!(profile.get_task_type_score("documentation"), 0.75);
|
||
|
|
assert_eq!(profile.get_confidence("coding"), 1.0);
|
||
|
|
assert_eq!(profile.get_confidence("documentation"), 0.75);
|
||
|
|
}
|
||
|
|
|
||
|
|
#[test]
|
||
|
|
fn test_empty_executions_default() {
|
||
|
|
let expertise = TaskTypeExpertise::from_executions(Vec::new(), "coding");
|
||
|
|
assert_eq!(expertise.success_rate, 0.5);
|
||
|
|
assert_eq!(expertise.total_executions, 0);
|
||
|
|
assert_eq!(expertise.confidence, 0.0);
|
||
|
|
}
|