Vapora/README.md

698 lines
27 KiB
Markdown
Raw Normal View History

2025-11-09 12:27:37 +00:00
<div align="center">
feat: Phase 5.3 - Multi-Agent Learning Infrastructure Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
<img src="assets/vapora.svg" alt="Vapora Logo" width="400">
2025-11-09 12:27:37 +00:00
2026-01-11 21:53:30 +00:00
2025-11-10 11:45:23 +00:00
🌊 Intelligent Development Orchestration Platform <br>
🎯 Specialized agents orchestrate pipelines for your team <br>
🤖 Multi-IA router (Claude, OpenAI, Gemini, Ollama) <br>
⚡ Built with Rust from backend to frontend <br>
2025-11-09 12:27:37 +00:00
[![License](https://img.shields.io/badge/license-MIT%2FApache--2.0-blue.svg)](LICENSE)
[![Rust](https://img.shields.io/badge/rust-1.75%2B-orange.svg)](https://www.rust-lang.org)
[![Kubernetes](https://img.shields.io/badge/kubernetes-ready-326CE5.svg)](https://kubernetes.io)
[![Istio](https://img.shields.io/badge/istio-service%20mesh-466BB0.svg)](https://istio.io)
2026-02-16 05:09:51 +00:00
[![Tests](https://img.shields.io/badge/tests-354%20passing-green.svg)](crates/)
2025-11-09 12:27:37 +00:00
2026-01-12 03:17:04 +00:00
[Features](#features) • [Quick Start](#quick-start) • [Architecture](#architecture) • [Docs](docs/) • [Contributing](#contributing)
2025-11-09 12:27:37 +00:00
</div>
2025-11-10 12:13:05 +00:00
2025-11-09 12:27:37 +00:00
---
```txt
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
╦ ╦╔═╗╔═╗╔═╗╦═╗╔═╗
╚╗╔╝╠═╣╠═╝║ ║╠╦╝╠═╣
╚╝ ╩ ╩╩ ╚═╝╩╚═╩ ╩
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Vaporate complexity
Where ideas vaporize into reality
```
feat: Phase 5.3 - Multi-Agent Learning Infrastructure Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
## 🌟 What is Vapora v1.2?
2025-11-09 12:27:37 +00:00
2026-02-16 05:09:51 +00:00
**VAPORA** is a **18-crate Rust workspace** (354 tests, 100% pass rate) delivering an **intelligent development orchestration platform** where teams and AI agents collaborate seamlessly to solve the 4 critical problems in parallel:
2025-11-10 11:41:29 +00:00
-**Context Switching** (Developers unified in one system instead of jumping between tools)
-**Knowledge Fragmentation** (Team decisions, code, and docs discoverable with RAG)
-**Manual Coordination** (Specialized agents orchestrate pipelines automatically)
-**Dev-Ops Friction** (Unified visibility from code changes through deployment)
Additional capabilities:
- 🤖 **Specialized agents** (Architect, Developer, Reviewer, Tester, Documenter, Marketer, Presenter, DevOps, Monitor, Security, ProjectManager, DecisionMaker - customizable & extensible)
- 🧠 **Multi-IA intelligent routing** (Claude, OpenAI, Gemini, Ollama selected per task)
- ☁️ **Self-hosted on Kubernetes** (no SaaS, complete control, Provisioning-based deployment)
2025-11-09 12:27:37 +00:00
### Key Highlights
2025-11-10 11:41:29 +00:00
- **🎨 Glassmorphism UI**: Vaporwave aesthetics with UnoCSS, Leptos reactive WASM
- **🤖 Specialized Agent Orchestration**: NATS JetStream coordination, parallel pipeline execution with approval gates
- **🧠 Multi-IA Router**: Hybrid routing (rules + dynamic + manual override) for optimal LLM per task
- **🚀 Full-Stack Rust**: Frontend (Leptos), Backend (Axum), Agents, Infrastructure
- **☁️ K8s Native**: Istio service mesh, Rook Ceph storage, Cedar policy engine RBAC
- **📚 RAG Integration**: Semantic search over Vapora docs, guides, code, and project materials
- **🔒 Multi-Tenant**: SurrealDB scope isolation, fine-grained Cedar policies, complete audit trails
2025-11-09 12:27:37 +00:00
---
2026-01-12 03:37:18 +00:00
## Features
2025-11-09 12:27:37 +00:00
### 📋 Project Management
- **Kanban Board**: Drag-and-drop tasks across Todo → Doing → Review → Done columns
- **Real-time Collaboration**: Optimistic updates for instant UI feedback
- **Smart Organization**: Feature tags, priority levels, task ordering
- **Responsive Design**: Works seamlessly from mobile to ultra-wide displays
### 🔄 Workflow Orchestrator (v1.2.0)
- **Multi-Stage Pipelines**: Orchestrate complex workflows with approval gates
- **Short-Lived Agent Contexts**: 95% cache token reduction (from $840/month to $110/month)
- **Artifact Passing**: ADR, Code, TestResults, Review, Documentation artifacts between stages
- **Kogral Integration**: Automatic context enrichment from `.kogral/` filesystem (guidelines, patterns, ADRs)
- **CLI Management**: 6 commands (start, list, status, approve, cancel, templates)
- **Event-Driven Coordination**: NATS pub/sub for workflow stage progression
- **4 Workflow Templates**:
- `feature_development` (5 stages: design → implementation → testing → review → deployment)
- `bugfix` (4 stages: investigation → fix → testing → deployment)
- `documentation_update` (3 stages: creation → review → publish)
- `security_audit` (4 stages: analysis → testing → remediation → verification)
2026-02-16 05:09:51 +00:00
### 🧩 Recursive Language Models (RLM) - Long-Context Reasoning (v1.3.0)
- **Distributed Reasoning**: Process documents >100k tokens without context rot
- **Hybrid Search**: BM25 (keywords) + Semantic (embeddings) + RRF fusion for optimal retrieval
- **Chunking Strategies**: Fixed-size, semantic (sentence-aware), code-aware (AST-based for Rust/Python/JS)
- **Sandbox Execution**: WASM tier (<10ms) + Docker tier (80-150ms) with automatic tier selection
- **Multi-Provider LLM**: OpenAI, Claude, Ollama integration with cost tracking
- **Knowledge Graph**: Execution history persistence with learning curves
- **Production Ready**: 38/38 tests passing, 0 clippy warnings, real SurrealDB persistence
- **Cost Efficient**: Chunk-based processing reduces token usage vs full-document LLM calls
feat: Phase 5.3 - Multi-Agent Learning Infrastructure Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
### 🧠 Intelligent Learning & Cost Optimization (Phase 5.3 + 5.4)
- **Per-Task-Type Learning**: Agents build expertise profiles from execution history
- **Recency Bias**: Recent performance weighted 3x (last 7 days) for adaptive selection
- **Budget Enforcement**: Hard caps per role (monthly/weekly) with automatic fallback
- **Cost-Efficient Routing**: Quality/cost ratio optimization for provider selection
- **Learning Curves**: Track agent improvement over time with confidence scoring
- **Prometheus Metrics**: Real-time budget utilization, fallback triggers, cost per provider
- **Gradual Production Rollout**: 4-week canary deployment with automated rollback
feat: Phase 5.3 - Multi-Agent Learning Infrastructure Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
2025-11-10 11:41:29 +00:00
### 🤖 Specialized AI Agents (Customizable & Extensible)
Select, tune, or extend agents for your pipeline orchestration needs. Default agents include:
**Parallel Agent Coordination**:
- 🏗️ **Architect** (Claude Opus): System design & ADRs
- 💻 **Developer** (Claude Sonnet): Code implementation [scales 5-20]
- 👀 **CodeReviewer** (Claude Sonnet): Quality assurance & CR
- 🧪 **Tester** (Claude Sonnet): Tests & benchmarks
- 📚 **Documenter** (GPT-4): Docs & root files
- 📢 **Marketer** (Claude Sonnet): Marketing content
- 🎤 **Presenter** (Claude Sonnet): Presentations & slides
- ⚙️ **DevOps** (Claude Sonnet): CI/CD & deployment
- 👁️ **Monitor** (Gemini Flash): Health & alerting [real-time]
- 🔒 **Security** (Claude Opus): Audit & compliance [can block]
- 📊 **ProjectManager** (Claude Sonnet): Roadmap & tracking
- 🎯 **DecisionMaker** (Claude Opus): Conflict resolution
**Multi-IA Router**: Transparent LLM selection per task context
- ✅ Automatic selection based on task complexity/latency/cost
- ✅ Manual override capability with audit logging
- ✅ Fallback chains (e.g., Claude Opus → GPT-4 → Claude Sonnet)
- ✅ Cost tracking & budget alerts per agent role
feat: Phase 5.3 - Multi-Agent Learning Infrastructure Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
-**Learning-based agent selection**: Agents improve from execution history
-**Budget enforcement**: Per-role cost limits with automatic fallback
-**Cost-efficient routing**: Quality/cost optimization per task type
2025-11-09 12:27:37 +00:00
### 🏗️ Infrastructure
- **Kubernetes Native**: Built for K8s (K3s, RKE2, or vanilla)
- **Istio Service Mesh**: mTLS, circuit breakers, rate limiting out of the box
- **Secrets Management**: RustyVault or Cosmian KMS (Rust-native)
- **Storage**: Rook Ceph for distributed persistent volumes
- **CI/CD**: Tekton Pipelines with Gitea integration
- **Registry**: Zot for lightweight OCI artifact storage
- **Observability**: Prometheus + Grafana + Loki + Tempo + Kiali
---
## 🛠️ Tech Stack
### Backend
<pre>
Rust Async runtime with Tokio
Axum Fast, ergonomic web framework
SurrealDB Multi-model database with scopes
NATS JetStream Message queue for agent jobs
Rig AI agent framework
2025-11-10 11:41:29 +00:00
fastembed Local embeddings for RAG
2025-11-09 12:27:37 +00:00
</pre>
### Frontend
<pre>
Leptos Reactive Rust WASM framework
UnoCSS Instant on-demand atomic CSS
leptos-use Hooks and utilities
thaw Component library
</pre>
### Infrastructure
<pre>
Kubernetes Orchestration (K3s/RKE2)
Istio Service mesh + ingress
Rook Ceph Distributed storage
Tekton Cloud-native CI/CD
RustyVault Secrets management
Zot OCI registry
Gitea Self-hosted Git
</pre>
2025-11-10 11:41:29 +00:00
### Agents & LLM
2025-11-09 12:27:37 +00:00
<pre>
2025-11-10 11:41:29 +00:00
Rig LLM agent framework with tool calling
fastembed Local embeddings for semantic search (RAG)
2026-02-16 05:09:51 +00:00
RLM (vapora-rlm) Recursive Language Models for long-context reasoning
Tantivy BM25 full-text search for hybrid retrieval
2025-11-10 11:41:29 +00:00
NATS JetStream Message queue for async agent coordination
Cedar Policy engine for fine-grained RBAC
MCP Gateway Model Context Protocol plugin system
feat: Phase 5.3 - Multi-Agent Learning Infrastructure Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
Learning Profiles Per-task-type expertise with recency bias
Budget Manager Per-role cost limits with automatic fallback
Knowledge Graph Temporal execution history with learning curves
2025-11-10 11:41:29 +00:00
Claude API Anthropic Claude (Opus, Sonnet, Haiku)
OpenAI API GPT-4, GPT-4o, GPT-3.5-turbo
Gemini API Google Gemini (2.0 Pro, Flash, 1.5 Pro)
Ollama Local LLMs (Llama 2, Mistral, etc.)
2025-11-09 12:27:37 +00:00
</pre>
---
2026-01-12 03:37:18 +00:00
## Quick Start
2025-11-09 12:27:37 +00:00
### Prerequisites
- **Rust 1.75+** ([rustup](https://rustup.rs))
- **Node.js 20+** (for UnoCSS)
- **Docker** (for local development)
- **Kubernetes cluster** (for production)
### Local Development
```bash
# Clone the repository
git clone https://github.com/vapora-platform/vapora
cd vapora
# Install dependencies
cargo build
# Available Just recipes (50+ commands)
just help # Show all available recipes
just help build # Show build recipes
just help test # Show test recipes
just help ci # Show CI recipes
2025-11-09 12:27:37 +00:00
# Setup SurrealDB (Docker)
docker run -d --name surrealdb \
-p 8000:8000 \
surrealdb/surrealdb:latest \
start --bind 0.0.0.0:8000 file://data/database.db
# Run migrations
cd migrations && surrealdb import --conn http://localhost:8000 *.surql
# Start backend
cd crates/vapora-backend
2025-11-09 12:27:37 +00:00
cargo run
# Start frontend (new terminal)
cd crates/vapora-frontend
2025-11-09 12:27:37 +00:00
trunk serve
# Install CLI (optional - for workflow management)
cd crates/vapora-cli
cargo build --release
cp target/release/vapora ~/.local/bin/
# CLI Usage
vapora workflow start --template feature_development
vapora workflow list
vapora workflow status <id>
vapora workflow approve <id> --approver "Your Name"
2025-11-09 12:27:37 +00:00
Visit http://localhost:3000 🎉
Docker Compose (Full Stack)
docker compose up -d
Includes: Backend, Frontend, SurrealDB, NATS, MCP Gateway
```
2025-11-10 11:41:29 +00:00
### Production Deployment (Kubernetes)
```bash
# Build and push Docker images
feat: Phase 5.3 - Multi-Agent Learning Infrastructure Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
nu scripts/build-docker.nu --registry docker.io --tag v1.2.0 --push
2025-11-10 11:41:29 +00:00
# Update secrets
edit kubernetes/03-secrets.yaml # Add your API keys
# Deploy to Kubernetes
nu scripts/deploy-k8s.nu
# Or use Provisioning (advanced)
cd provisioning/vapora-wrksp
provisioning workflow run workflows/deploy-full-stack.yaml
```
feat: Phase 5.3 - Multi-Agent Learning Infrastructure Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
**See full deployment guide**: [`Deployment Guide`](docs/setup/deployment.md)
2025-11-10 11:41:29 +00:00
2025-11-09 12:27:37 +00:00
---
2026-01-12 03:37:18 +00:00
## Architecture
2025-11-09 12:27:37 +00:00
2026-02-16 05:09:51 +00:00
### System Architecture Diagram
<div align="center">
<img src="assets/vapora_architecture.svg" alt="VAPORA Architecture Diagram" width="100%">
</div>
**Interactive SVG with animated data flows** - Open the [full diagram](assets/vapora_architecture.svg) to see particle animations along connection paths.
Alternative versions:
- [Dark theme](assets/vapora_architecture.svg) (default - slate background)
- [Light theme](assets/vapora_architecture_white.svg) (white background)
### Architecture Layers
The system is organized in 5 architectural layers:
**1. Presentation Layer**
- Leptos WASM Frontend with Kanban board and glassmorphism UI
**2. Services Layer**
- Axum Backend API (40+ REST endpoints)
- Agent Runtime (orchestration, learning profiles)
- MCP Gateway (Model Context Protocol, plugin system)
- A2A Protocol (Agent-to-Agent communication)
**3. Intelligence Layer**
- RLM Engine (hybrid search: BM25 + Semantic + RRF)
- Multi-IA LLM Router (budget enforcement, cost tracking)
- Swarm Coordinator (load balancing, Prometheus metrics)
**4. Data Layer**
- Knowledge Graph (temporal history, learning curves)
- SurrealDB (multi-model database, multi-tenant)
- NATS JetStream (message queue, async coordination)
**5. LLM Providers**
- Anthropic Claude (Opus, Sonnet, Haiku)
- OpenAI (GPT-4, GPT-4o, GPT-3.5)
- Google Gemini (2.0 Pro, Flash, 1.5 Pro)
- Ollama (local LLMs: Llama, Mistral, CodeLlama)
2025-11-09 12:27:37 +00:00
2026-02-16 05:09:51 +00:00
### Data Flow
2025-11-09 12:27:37 +00:00
2026-02-16 05:09:51 +00:00
1. User interacts with Leptos UI (Kanban board)
2. Frontend → Backend API (REST endpoints)
3. Backend → Agent Runtime (task assignment)
4. Agent Runtime → LLM Router (provider selection with budget enforcement)
5. LLM Router → Providers (Claude/OpenAI/Gemini/Ollama)
6. RLM Engine processes long-context tasks (hybrid search + distributed reasoning)
7. All data persisted in SurrealDB with multi-tenant isolation
8. NATS JetStream coordinates async agent workflows
9. Results streamed back to UI with optimistic updates
2025-11-09 12:27:37 +00:00
---
📸 Screenshots
Kanban Board with Glassmorphism
```
┌─────────────────────────────────────────────────────────┐
│ Vapora 🔍 Search Projects Agents + New │
├─────────────────────────────────────────────────────────┤
│ │
2025-11-10 12:24:13 +00:00
│ 📌 🔵 🟣 ✅ │
2025-11-10 12:23:35 +00:00
│ ┌─────────┬─────────┬─────────┬─────────┐ │
│ │ TODO │ DOING │ REVIEW │ DONE │ │
│ │ (5) │ (3) │ (2) │ (12) │ │
│ ├─────────┼─────────┼─────────┼─────────┤ │
│ │ ┌─────┐ │ ┌─────┐ │ ┌─────┐ │ ┌─────┐ │ │
│ │ │Task │ │ │Task │ │ │Task │ │ │Task │ │ │
│ │ │Card │ │ │Card │ │ │Card │ │ │Card │ │ │
│ │ └─────┘ │ └─────┘ │ └─────┘ │ └─────┘ │ │
│ │ │ │ │ │ │
│ │ Glass │ Neon │ Vapor │ Fluid │ │
│ │ Blur │ Glow │ Waves │ Motion │ │
│ └─────────┴─────────┴─────────┴─────────┘ │
2025-11-09 12:27:37 +00:00
└─────────────────────────────────────────────────────────┘
```
Agent Plugin Marketplace
```
┌─────────────────────────────────────────────────────────┐
│ MCP Plugins 🔌 Install New │
├─────────────────────────────────────────────────────────┤
│ ┌──────────────────────────────────────────┐ │
│ │ 🔍 Code Analysis Plugin │ │
│ │ Analyze code with tree-sitter + LLM │ │
│ │ • Rust, TypeScript, Python │ │
│ │ • Complexity metrics │ │
│ │ [✓ Installed] │ │
│ └──────────────────────────────────────────┘ │
│ │
│ ┌──────────────────────────────────────────┐ │
│ │ 📚 RAG Search Plugin │ │
2025-11-10 12:18:34 +00:00
│ │ Semantic search over Vapora docs & code │ │
2025-11-09 12:27:37 +00:00
│ │ • Local embeddings (fastembed) │ │
2025-11-10 12:18:34 +00:00
│ │ • Indexes: guides/, FEATURES, .coder/ │ │
│ │ [✓ Installed] │ │
2025-11-09 12:27:37 +00:00
│ └──────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────┘
```
---
📦 Project Structure
feat: Phase 5.3 - Multi-Agent Learning Infrastructure Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
```text
vapora/
├── crates/
│ ├── vapora-shared/ # Core models, errors, types
│ ├── vapora-backend/ # Axum REST API (40+ endpoints, 161 tests)
│ ├── vapora-agents/ # Agent orchestration + learning profiles (71 tests)
│ ├── vapora-llm-router/ # Multi-provider routing + budget (53 tests)
│ ├── vapora-swarm/ # Swarm coordination + Prometheus (6 tests)
│ ├── vapora-knowledge-graph/ # Temporal KG + learning curves (20 tests)
│ ├── vapora-workflow-engine/ # Multi-stage workflows + Kogral integration (26 tests)
2026-02-16 05:09:51 +00:00
│ ├── vapora-rlm/ # Recursive Language Models for long-context (38 tests)
│ ├── vapora-a2a/ # Agent-to-Agent protocol server (7 integration tests)
│ ├── vapora-a2a-client/ # A2A client library (5 tests)
│ ├── vapora-cli/ # CLI commands (start, list, approve, cancel, etc.)
│ ├── vapora-frontend/ # Leptos WASM UI (Kanban)
│ ├── vapora-leptos-ui/ # Leptos component library (16 components, 4 tests)
│ ├── vapora-mcp-server/ # MCP protocol gateway (1 test)
│ ├── vapora-tracking/ # Task/project storage layer (1 test)
│ ├── vapora-telemetry/ # OpenTelemetry integration (16 tests)
│ ├── vapora-analytics/ # Event pipeline + usage stats (5 tests)
│ ├── vapora-worktree/ # Git worktree management (4 tests)
│ └── vapora-doc-lifecycle/ # Documentation management (15 tests)
├── assets/
│ ├── web/ # Landing page (optimized + minified)
│ │ ├── src/index.html # Source (readable, 26KB)
│ │ ├── index.html # Production (minified, 18KB)
│ │ ├── minify.sh # Auto-minification script
│ │ └── README.md # Web assets guide
│ └── vapora.svg # Logo
├── kubernetes/ # K8s manifests (base, overlays, platform)
├── migrations/ # SurrealDB migrations
├── config/ # Configuration files (TOML)
│ ├── vapora.toml # Backend configuration
│ ├── agents.toml # Agent roles and limits
│ ├── workflows.toml # Workflow templates
│ └── agent-budgets.toml # Budget enforcement config
└── docs/ # Product documentation
├── adrs/ # Architecture Decision Records
├── features/ # Feature documentation
└── setup/ # Installation and CLI guides
2026-02-16 05:09:51 +00:00
# Total: 18 crates, 354 tests (100% pass rate)
2025-11-09 12:27:37 +00:00
```
---
🔌 MCP Plugin Development
Create custom agents with the MCP plugin system:
```rust
use vapora_mcp::{Plugin, Tool, Resource};
#[derive(Plugin)]
pub struct MyCustomPlugin;
impl Plugin for MyCustomPlugin {
fn name(&self) -> &str {
"my-custom-plugin"
}
fn tools(&self) -> Vec<Tool> {
vec![
Tool::new("my_tool")
.description("Does something cool")
.parameter("input", "string")
]
}
}
#[async_trait]
impl ToolExecutor for MyCustomPlugin {
async fn execute_tool(
&self,
tool: &str,
params: serde_json::Value
) -> Result<serde_json::Value> {
match tool {
"my_tool" => {
// Your logic here
Ok(json!({"result": "success"}))
}
_ => Err(anyhow!("Unknown tool"))
}
}
}
```
See docs/mcp-plugins.md for full guide.
---
2025-11-10 11:41:29 +00:00
🚢 Deployment with Provisioning
2025-11-09 12:27:37 +00:00
2025-11-10 11:41:29 +00:00
Using Provisioning (not Helm) for declarative K8s infrastructure:
2025-11-09 12:27:37 +00:00
```bash
2025-11-10 11:41:29 +00:00
# Navigate to Provisioning workspace
cd provisioning/vapora-wrksp
# Deploy full VAPORA stack (KCL + Taskservs + Workflows)
provisioning workflow run workflows/deploy-full-stack.yaml
# This creates:
# - K8s cluster (K3s/RKE2) with Cilium CNI
# - Istio service mesh with mTLS
# - Rook Ceph storage
# - SurrealDB (3 replicas, 50Gi storage)
# - Redis (3 replicas, 20Gi storage)
# - NATS JetStream (3 replicas, 30Gi storage)
# - Axum backend (3-10 replicas)
# - Leptos frontend (2 replicas)
# - Agent runtime (3-50 replicas, HPA enabled)
# - LLM Router (2-5 replicas)
# - MCP Gateway (2-5 replicas)
# Access UI
open https://vapora.example.com
# Scale developer agents
provisioning taskserv scale vapora-agents --agent developer --replicas 15
# Monitor health
provisioning health-check --services all
2025-11-09 12:27:37 +00:00
Environment Variables
# Backend
SURREAL_URL=http://surrealdb:8000
NATS_URL=nats://nats:4222
MCP_GATEWAY_URL=http://mcp-gateway:8080
RUSTYVAULT_ADDR=https://rustyvault:8200
# Frontend
VITE_API_URL=https://api.vapora.dev
# Secrets (stored in RustyVault)
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...
```
---
🧪 Testing
```bash
# Backend tests
cd vapora-backend
cargo test
# Frontend tests
cd vapora-frontend
cargo test --target wasm32-unknown-unknown
# Integration tests
cargo test --workspace
# E2E tests (requires running services)
./scripts/run-e2e-tests.sh
```
---
📊 Monitoring
Access Grafana dashboards:
kubectl port-forward -n observability svc/grafana 3000:80
Pre-configured dashboards:
- Vapora Overview: Request rates, latencies, errors
- Agent Metrics: Job queue depth, execution times, token usage
- Istio Service Mesh: Traffic flows, mTLS status
- Ceph Storage: Capacity, IOPS, health
2025-11-10 11:41:29 +00:00
---
📚 Documentation & Specifications
2025-11-10 12:13:05 +00:00
VAPORA v1.0 is built on comprehensive specifications organized by domain:
2025-11-10 11:41:29 +00:00
**Core Specifications** (guides/core/):
- **VAPORA-ARCHITECTURE-V2.md**: 4-layer architecture (Frontend, API, Service, Data, Infrastructure)
- **AGENT-REGISTRY-COORDINATION.md**: 12 agent roles, NATS message patterns, health checking
- **MULTI-IA-ROUTER.md**: Hybrid routing system (rules + dynamic + override), cost tracking
- **MULTI-AGENT-WORKFLOWS.md**: End-to-end workflows with parallel execution & approval gates
- **ROLES-PERMISSIONS-PROFILES.md**: Cedar policy engine, team profiles, fine-grained RBAC
- **TASK-AGENT-DOC-MANAGER-V2.md**: Multi-agent task orchestration & decision extraction
**Integration Specifications** (guides/integration/):
- **DOC-LIFECYCLE-INTEGRATION.md**: Dual-mode (plugin + standalone) documentation management
- **PROVISIONING-INTEGRATION.md**: KCL schemas, taskservs, workflows for K8s deployment
- **RAG-INTEGRATION.md**: Semantic search with hybrid retrieval & embedding strategy
**Component Specifications** (guides/):
- **SESSION-LIFECYCLE-MANAGER.md**: .coder/ organization, metadata extraction, decision capture
- **ROOT-FILES-KEEPER.md**: Keep README, CHANGELOG, ROADMAP always updated
- **MIGRATION-PLAN.md**: Gradual migration path for existing projects
**Deployment Guide** (provisioning/vapora-wrksp/):
- workspace.toml: Master configuration (agents, LLM, monitoring, backup)
- taskservs/: Service definitions for backend, frontend, agents, LLM router, MCP gateway
- kcl/: Infrastructure as Code schemas (cluster, services, storage, agents, multi-ia)
- workflows/: Batch operations (deploy, scale, upgrade, disaster-recovery)
- README.md: Quick start and operation guide
**References**:
- guides/archive/v1-single-agent/: Legacy v1.0 specifications for historical reference
2025-11-09 12:27:37 +00:00
---
2026-01-12 03:37:18 +00:00
## Contributing
2025-11-09 12:27:37 +00:00
We welcome contributions! Please see CONTRIBUTING.md.
Development Workflow
1. Fork the repository
2. Create a feature branch (git checkout -b feature/amazing)
3. Commit your changes (git commit -m 'Add amazing feature')
4. Push to branch (git push origin feature/amazing)
5. Open a Pull Request
Code Style
- Rust: Follow rustfmt and clippy recommendations
- Frontend: Use UnoCSS shortcuts, avoid inline styles
- Commits: Conventional commits (feat:, fix:, docs:, etc.)
---
📄 License
Dual-licensed under:
- MIT License (LICENSE-MIT)
- Apache License 2.0 (LICENSE-APACHE)
You may choose either license.
---
🙏 Acknowledgments
Inspired by:
- https://github.com/transcend-engineering/archon - Original glassmorphism UI concept
- https://github.com/docker/mcp-gateway - MCP integration pattern
- https://rook.io - Ceph storage operator
- https://istio.io - Service mesh architecture
Built with ❤️ using Rust 🦀
---
🔗 Links
- Website: https://vapora.dev
- Documentation: https://docs.vapora.dev
- GitHub: https://github.com/vapora-platform/vapora
- Discord: https://discord.gg/vapora
- Twitter: https://twitter.com/VaporaPlatform
---
#readme
Made with vaporwave dreams and Rust reality ✨
---
Archivos Adicionales Recomendados
CONTRIBUTING.md
# Contributing to Vapora
Thank you for your interest in contributing to Vapora!
## Code of Conduct
Be respectful, inclusive, and constructive.
## Development Setup
See [README.md](README.md#-quick-start) for setup instructions.
## Pull Request Process
1. Update documentation for any API changes
2. Add tests for new features
3. Ensure `cargo clippy` and `cargo fmt` pass
4. Update CHANGELOG.md
## Coding Standards
- **Rust**: Idiomatic Rust, avoid `unwrap()`, use `?` operator
- **Error Handling**: Use `anyhow::Result` for services, custom errors for API
- **Documentation**: All public items must have doc comments
- **Tests**: Unit tests for services, integration tests for API
## Commit Messages
Follow [Conventional Commits](https://www.conventionalcommits.org/):
feat: add code analysis plugin
fix: resolve race condition in task reordering
docs: update MCP plugin guide
chore: bump dependencies
LICENSE-MIT y LICENSE-APACHE
---
feat: Phase 5.3 - Multi-Agent Learning Infrastructure Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
⚠️ **Brand Assets Location**: See [`./assets/`](./assets/) for complete brand system including logo variations, color palettes, and interactive preview → [Open Logo Preview](./assets/vapora_logo.html)
2025-11-09 12:27:37 +00:00
---