use chrono::{Duration, Utc}; use vapora_agents::{ ExecutionData, ProfileAdapter, TaskTypeExpertise, AgentScoringService, }; use vapora_swarm::messages::AgentProfile; #[test] fn test_end_to_end_learning_flow() { // Simulate historical executions for agent let now = Utc::now(); let executions: Vec = (0..20) .map(|i| ExecutionData { timestamp: now - Duration::days(i), duration_ms: 100 + (i as u64 * 10), success: i < 18, // 18 successes out of 20 = 90% }) .collect(); // Calculate expertise from executions let expertise = TaskTypeExpertise::from_executions(executions, "coding"); assert!((expertise.success_rate - 0.9).abs() < 0.01); assert_eq!(expertise.total_executions, 20); // Create learning profile for agent let mut profile = ProfileAdapter::create_learning_profile("agent-1".to_string()); // Add expertise to profile profile = ProfileAdapter::add_task_type_expertise(profile, "coding".to_string(), expertise); // Verify expertise is stored assert_eq!(profile.get_task_type_score("coding"), 0.9); assert!(profile.get_confidence("coding") > 0.9); // 20/20 is high confidence } #[test] fn test_learning_profile_improves_over_time() { let now = Utc::now(); // Initial executions: 50% success let initial_execs: Vec = (0..10) .map(|i| ExecutionData { timestamp: now - Duration::days(i * 2), duration_ms: 100, success: i < 5, }) .collect(); let mut initial_expertise = TaskTypeExpertise::from_executions(initial_execs, "coding"); assert!((initial_expertise.success_rate - 0.5).abs() < 0.01); // New successful execution let new_exec = ExecutionData { timestamp: now, duration_ms: 100, success: true, }; initial_expertise.update_with_execution(&new_exec); // Expertise should improve assert!(initial_expertise.success_rate > 0.5); assert_eq!(initial_expertise.total_executions, 11); } #[test] fn test_agent_scoring_with_learning() { // Create candidate agents let candidates = vec![ AgentProfile { id: "agent-a".to_string(), roles: vec!["developer".to_string()], capabilities: vec!["coding".to_string()], current_load: 0.3, success_rate: 0.8, availability: true, }, AgentProfile { id: "agent-b".to_string(), roles: vec!["developer".to_string()], capabilities: vec!["coding".to_string()], current_load: 0.1, success_rate: 0.8, availability: true, }, ]; // Create learning profiles let mut profile_a = ProfileAdapter::create_learning_profile("agent-a".to_string()); profile_a = ProfileAdapter::add_task_type_expertise( profile_a, "coding".to_string(), TaskTypeExpertise { success_rate: 0.95, total_executions: 50, recent_success_rate: 0.95, avg_duration_ms: 100.0, learning_curve: Vec::new(), confidence: 1.0, }, ); let mut profile_b = ProfileAdapter::create_learning_profile("agent-b".to_string()); profile_b = ProfileAdapter::add_task_type_expertise( profile_b, "coding".to_string(), TaskTypeExpertise { success_rate: 0.70, total_executions: 30, recent_success_rate: 0.70, avg_duration_ms: 120.0, learning_curve: Vec::new(), confidence: 1.0, }, ); let learning_profiles = vec![ ("agent-a".to_string(), profile_a), ("agent-b".to_string(), profile_b), ]; // Score agents let ranked = AgentScoringService::rank_agents(candidates, "coding", &learning_profiles); assert_eq!(ranked.len(), 2); // agent-a should rank higher due to superior expertise despite higher load assert_eq!(ranked[0].agent_id, "agent-a"); assert!(ranked[0].final_score > ranked[1].final_score); } #[test] fn test_recency_bias_affects_ranking() { let candidates = vec![ AgentProfile { id: "agent-x".to_string(), roles: vec!["developer".to_string()], capabilities: vec!["coding".to_string()], current_load: 0.3, success_rate: 0.8, availability: true, }, AgentProfile { id: "agent-y".to_string(), roles: vec!["developer".to_string()], capabilities: vec!["coding".to_string()], current_load: 0.3, success_rate: 0.8, availability: true, }, ]; // agent-x has high overall success but recent failures let mut profile_x = ProfileAdapter::create_learning_profile("agent-x".to_string()); profile_x = ProfileAdapter::add_task_type_expertise( profile_x, "coding".to_string(), TaskTypeExpertise { success_rate: 0.85, total_executions: 40, recent_success_rate: 0.60, // Recent poor performance avg_duration_ms: 100.0, learning_curve: Vec::new(), confidence: 1.0, }, ); // agent-y has consistent good recent performance let mut profile_y = ProfileAdapter::create_learning_profile("agent-y".to_string()); profile_y = ProfileAdapter::add_task_type_expertise( profile_y, "coding".to_string(), TaskTypeExpertise { success_rate: 0.80, total_executions: 30, recent_success_rate: 0.90, // Recent strong performance avg_duration_ms: 110.0, learning_curve: Vec::new(), confidence: 1.0, }, ); let learning_profiles = vec![ ("agent-x".to_string(), profile_x), ("agent-y".to_string(), profile_y), ]; // Rank with recency bias let ranked = AgentScoringService::rank_agents_with_recency(candidates, "coding", &learning_profiles); assert_eq!(ranked.len(), 2); // agent-y should rank higher due to recent success despite lower overall rate assert_eq!(ranked[0].agent_id, "agent-y"); } #[test] fn test_confidence_prevents_overfitting() { let candidates = vec![ AgentProfile { id: "agent-new".to_string(), roles: vec!["developer".to_string()], capabilities: vec!["coding".to_string()], current_load: 0.0, success_rate: 0.8, availability: true, }, AgentProfile { id: "agent-exp".to_string(), roles: vec!["developer".to_string()], capabilities: vec!["coding".to_string()], current_load: 0.0, success_rate: 0.8, availability: true, }, ]; // agent-new: High expertise but low confidence (few samples) let mut profile_new = ProfileAdapter::create_learning_profile("agent-new".to_string()); profile_new = ProfileAdapter::add_task_type_expertise( profile_new, "coding".to_string(), TaskTypeExpertise { success_rate: 1.0, // Perfect so far total_executions: 2, recent_success_rate: 1.0, avg_duration_ms: 100.0, learning_curve: Vec::new(), confidence: 0.1, // Low confidence - only 2/20 executions }, ); // agent-exp: Slightly lower expertise but high confidence let mut profile_exp = ProfileAdapter::create_learning_profile("agent-exp".to_string()); profile_exp = ProfileAdapter::add_task_type_expertise( profile_exp, "coding".to_string(), TaskTypeExpertise { success_rate: 0.95, total_executions: 50, recent_success_rate: 0.95, avg_duration_ms: 100.0, learning_curve: Vec::new(), confidence: 1.0, }, ); let learning_profiles = vec![ ("agent-new".to_string(), profile_new), ("agent-exp".to_string(), profile_exp), ]; let ranked = AgentScoringService::rank_agents(candidates, "coding", &learning_profiles); // agent-exp should rank higher despite slightly lower expertise due to confidence weighting assert_eq!(ranked[0].agent_id, "agent-exp"); } #[test] fn test_multiple_task_types_independent() { let mut profile = ProfileAdapter::create_learning_profile("agent-1".to_string()); // Agent excels at coding let coding_exp = TaskTypeExpertise { success_rate: 0.95, total_executions: 30, recent_success_rate: 0.95, avg_duration_ms: 100.0, learning_curve: Vec::new(), confidence: 1.0, }; // Agent struggles with documentation let docs_exp = TaskTypeExpertise { success_rate: 0.60, total_executions: 20, recent_success_rate: 0.65, avg_duration_ms: 250.0, learning_curve: Vec::new(), confidence: 1.0, }; profile = ProfileAdapter::add_task_type_expertise(profile, "coding".to_string(), coding_exp); profile = ProfileAdapter::add_task_type_expertise(profile, "documentation".to_string(), docs_exp); // Verify independence assert_eq!(profile.get_task_type_score("coding"), 0.95); assert_eq!(profile.get_task_type_score("documentation"), 0.60); } #[tokio::test] async fn test_coordinator_assignment_with_learning_scores() { use vapora_agents::{ AgentRegistry, AgentMetadata, AgentCoordinator, }; use std::sync::Arc; // Create registry with test agents let registry = Arc::new(AgentRegistry::new(10)); // Register two agents for developer role let agent_a = AgentMetadata::new( "developer".to_string(), "Agent A - Coding Specialist".to_string(), "claude".to_string(), "claude-opus-4-5".to_string(), vec!["coding".to_string(), "testing".to_string()], ); let agent_b = AgentMetadata::new( "developer".to_string(), "Agent B - Generalist".to_string(), "claude".to_string(), "claude-sonnet-4".to_string(), vec!["coding".to_string(), "documentation".to_string()], ); let agent_a_id = agent_a.id.clone(); let agent_b_id = agent_b.id.clone(); registry.register_agent(agent_a).ok(); registry.register_agent(agent_b).ok(); // Create coordinator let coordinator = AgentCoordinator::with_registry(registry); // Create learning profiles: Agent A excels at coding, Agent B is mediocre let now = Utc::now(); let agent_a_executions: Vec = (0..20) .map(|i| ExecutionData { timestamp: now - Duration::days(i), duration_ms: 100, success: i < 19, // 95% success rate }) .collect(); let agent_b_executions: Vec = (0..20) .map(|i| ExecutionData { timestamp: now - Duration::days(i), duration_ms: 100, success: i < 14, // 70% success rate }) .collect(); let agent_a_expertise = TaskTypeExpertise::from_executions(agent_a_executions, "coding"); let agent_b_expertise = TaskTypeExpertise::from_executions(agent_b_executions, "coding"); let mut agent_a_profile = ProfileAdapter::create_learning_profile(agent_a_id.clone()); agent_a_profile = ProfileAdapter::add_task_type_expertise(agent_a_profile, "coding".to_string(), agent_a_expertise); let mut agent_b_profile = ProfileAdapter::create_learning_profile(agent_b_id.clone()); agent_b_profile = ProfileAdapter::add_task_type_expertise(agent_b_profile, "coding".to_string(), agent_b_expertise); // Update coordinator with learning profiles coordinator .update_learning_profile(&agent_a_id, agent_a_profile) .ok(); coordinator .update_learning_profile(&agent_b_id, agent_b_profile) .ok(); // Assign a coding task let _task_id = coordinator .assign_task( "developer", "Implement authentication module".to_string(), "Create secure login and token validation".to_string(), "Security critical".to_string(), 2, ) .await .expect("Should assign task"); // Get the registry to verify which agent was selected let registry = coordinator.registry(); let agent_a_tasks = registry.list_all() .iter() .find(|a| a.id == agent_a_id) .map(|a| a.current_tasks) .unwrap_or(0); let agent_b_tasks = registry.list_all() .iter() .find(|a| a.id == agent_b_id) .map(|a| a.current_tasks) .unwrap_or(0); // Agent A (higher expertise in coding) should have been selected assert!(agent_a_tasks > 0, "Agent A (coding specialist) should have 1+ tasks"); assert_eq!(agent_b_tasks, 0, "Agent B (generalist) should have 0 tasks"); // Verify learning profiles are stored let stored_profiles = coordinator.get_all_learning_profiles(); assert!(stored_profiles.contains_key(&agent_a_id), "Agent A profile should be stored"); assert!(stored_profiles.contains_key(&agent_b_id), "Agent B profile should be stored"); }