# VAPORA Composed Configuration - Enterprise Mode # # Production high-availability configuration # Uses: schema → common defaults → enterprise mode defaults → user customizations # # Features: # - Network accessible with clustering (0.0.0.0) # - SurrealDB cluster with replication # - NATS JetStream cluster # - All LLM providers enabled (Claude, OpenAI, Gemini, Ollama) # - Aggressive cost optimization with multi-provider fallback # - Enterprise-grade security (TLS enforced, MFA required) # - Full observability (Prometheus, OpenTelemetry, distributed tracing) # - 90-day knowledge graph retention for learning # - 6-hour automated backup interval # # Prerequisites: # - Kubernetes cluster (production-grade) # - SurrealDB cluster with replication # - NATS JetStream cluster # - Prometheus/Grafana stack # - TLS certificates for all services # - Multi-provider LLM setup # # Generated: January 12, 2026 let helpers = import "../common/helpers.ncl" in let schema = import "../../vapora/main.ncl" in let defaults_mode = import "../defaults/deployment/enterprise.ncl" in # Composition: Schema → Mode Defaults → User Config helpers.compose_config schema defaults_mode { # Production domain configuration frontend.api_url = "https://api.vapora.production.com", # All providers enabled for cost optimization providers = { claude_enabled = true, openai_enabled = true, gemini_enabled = true, ollama_enabled = true, ollama_url = "http://ollama-cluster.production:11434", }, # Optional: Customize cost control strategy # llm_router.budget_enforcement = { # enabled = true, # window = "monthly", # near_threshold_percent = 70, # Alert at 70% # auto_fallback = true, # Always fallback to cheaper # detailed_tracking = true, # Track every token for billing # role_limits = { # architect_cents = 2000000, # $20,000/month # developer_cents = 1500000, # $15,000/month # reviewer_cents = 800000, # $8,000/month # testing_cents = 500000, # $5,000/month # }, # }, # Optional: Customize agent learning # agents.learning = { # enabled = true, # recency_window_days = 30, # 30-day learning window # recency_multiplier = 4.0, # Stronger recency weighting # }, # Optional: Customize knowledge graph # agents.knowledge_graph = { # enabled = true, # retention_days = 365, # Full year of history # causal_reasoning = true, # similarity_search = true, # }, # Optional: Custom backup strategy # storage = { # base_path = "/var/lib/vapora", # backup_enabled = true, # backup_interval = 6, # Backup every 6 hours # }, }