Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
167 lines
4.8 KiB
Rust
167 lines
4.8 KiB
Rust
use chrono::{Duration, Utc};
|
|
use vapora_agents::{ExecutionData, LearningProfile, TaskTypeExpertise};
|
|
|
|
#[test]
|
|
fn test_per_task_type_expertise() {
|
|
let mut profile = LearningProfile::new("agent-1".to_string());
|
|
|
|
let coding_expertise = TaskTypeExpertise {
|
|
success_rate: 0.9,
|
|
total_executions: 20,
|
|
recent_success_rate: 0.95,
|
|
avg_duration_ms: 120.0,
|
|
learning_curve: Vec::new(),
|
|
confidence: 1.0,
|
|
};
|
|
|
|
profile.set_task_type_expertise("coding".to_string(), coding_expertise);
|
|
|
|
assert_eq!(profile.get_task_type_score("coding"), 0.9);
|
|
assert_eq!(profile.get_task_type_score("documentation"), 0.5); // Default
|
|
}
|
|
|
|
#[test]
|
|
fn test_recency_bias_weighting() {
|
|
let now = Utc::now();
|
|
let executions = vec![
|
|
ExecutionData {
|
|
timestamp: now - Duration::hours(1),
|
|
duration_ms: 100,
|
|
success: true,
|
|
},
|
|
ExecutionData {
|
|
timestamp: now - Duration::days(8),
|
|
duration_ms: 100,
|
|
success: false,
|
|
},
|
|
];
|
|
|
|
let expertise = TaskTypeExpertise::from_executions(executions, "coding");
|
|
|
|
// Recent success should pull average up despite old failure
|
|
assert!(expertise.recent_success_rate > 0.5);
|
|
assert!(expertise.recent_success_rate > expertise.success_rate);
|
|
}
|
|
|
|
#[test]
|
|
fn test_confidence_scaling() {
|
|
let now = Utc::now();
|
|
|
|
// Few executions = low confidence
|
|
let few_executions = vec![ExecutionData {
|
|
timestamp: now,
|
|
duration_ms: 100,
|
|
success: true,
|
|
}];
|
|
let few_expertise = TaskTypeExpertise::from_executions(few_executions, "coding");
|
|
assert!(few_expertise.confidence < 0.1);
|
|
|
|
// Many executions = high confidence
|
|
let many_executions: Vec<_> = (0..50)
|
|
.map(|i| ExecutionData {
|
|
timestamp: now - Duration::hours(i),
|
|
duration_ms: 100,
|
|
success: i % 2 == 0,
|
|
})
|
|
.collect();
|
|
let many_expertise = TaskTypeExpertise::from_executions(many_executions, "coding");
|
|
assert_eq!(many_expertise.confidence, 1.0); // Capped at 1.0
|
|
}
|
|
|
|
#[test]
|
|
fn test_learning_curve_generation() {
|
|
let now = Utc::now();
|
|
let executions = vec![
|
|
ExecutionData {
|
|
timestamp: now - Duration::hours(25),
|
|
duration_ms: 100,
|
|
success: true,
|
|
},
|
|
ExecutionData {
|
|
timestamp: now - Duration::hours(24),
|
|
duration_ms: 100,
|
|
success: true,
|
|
},
|
|
ExecutionData {
|
|
timestamp: now - Duration::hours(1),
|
|
duration_ms: 100,
|
|
success: false,
|
|
},
|
|
];
|
|
|
|
let expertise = TaskTypeExpertise::from_executions(executions, "coding");
|
|
assert!(!expertise.learning_curve.is_empty());
|
|
|
|
// Curve should be chronologically sorted
|
|
for i in 1..expertise.learning_curve.len() {
|
|
assert!(
|
|
expertise.learning_curve[i - 1].0 <= expertise.learning_curve[i].0,
|
|
"Learning curve must be chronologically sorted"
|
|
);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_execution_update() {
|
|
let now = Utc::now();
|
|
let mut expertise = TaskTypeExpertise {
|
|
success_rate: 0.8,
|
|
total_executions: 10,
|
|
recent_success_rate: 0.8,
|
|
avg_duration_ms: 100.0,
|
|
learning_curve: Vec::new(),
|
|
confidence: 0.5,
|
|
};
|
|
|
|
let execution = ExecutionData {
|
|
timestamp: now,
|
|
duration_ms: 150,
|
|
success: true,
|
|
};
|
|
|
|
expertise.update_with_execution(&execution);
|
|
|
|
assert_eq!(expertise.total_executions, 11);
|
|
assert!(expertise.success_rate > 0.8); // Success added
|
|
assert!(expertise.avg_duration_ms > 100.0); // Duration increased
|
|
}
|
|
|
|
#[test]
|
|
fn test_multiple_task_types() {
|
|
let mut profile = LearningProfile::new("agent-1".to_string());
|
|
|
|
let coding = TaskTypeExpertise {
|
|
success_rate: 0.95,
|
|
total_executions: 20,
|
|
recent_success_rate: 0.95,
|
|
avg_duration_ms: 120.0,
|
|
learning_curve: Vec::new(),
|
|
confidence: 1.0,
|
|
};
|
|
|
|
let documentation = TaskTypeExpertise {
|
|
success_rate: 0.75,
|
|
total_executions: 15,
|
|
recent_success_rate: 0.80,
|
|
avg_duration_ms: 200.0,
|
|
learning_curve: Vec::new(),
|
|
confidence: 0.75,
|
|
};
|
|
|
|
profile.set_task_type_expertise("coding".to_string(), coding);
|
|
profile.set_task_type_expertise("documentation".to_string(), documentation);
|
|
|
|
assert_eq!(profile.get_task_type_score("coding"), 0.95);
|
|
assert_eq!(profile.get_task_type_score("documentation"), 0.75);
|
|
assert_eq!(profile.get_confidence("coding"), 1.0);
|
|
assert_eq!(profile.get_confidence("documentation"), 0.75);
|
|
}
|
|
|
|
#[test]
|
|
fn test_empty_executions_default() {
|
|
let expertise = TaskTypeExpertise::from_executions(Vec::new(), "coding");
|
|
assert_eq!(expertise.success_rate, 0.5);
|
|
assert_eq!(expertise.total_executions, 0);
|
|
assert_eq!(expertise.confidence, 0.0);
|
|
}
|