Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
141 lines
4.2 KiB
Rust
141 lines
4.2 KiB
Rust
// Integration tests for VAPORA backend
|
|
// These tests verify the complete API functionality
|
|
|
|
use axum::http::StatusCode;
|
|
use axum_test::TestServer;
|
|
use chrono::Utc;
|
|
use vapora_shared::models::{Agent, AgentRole, AgentStatus, Project, ProjectStatus, Task, TaskPriority, TaskStatus};
|
|
|
|
/// Helper function to create a test project
|
|
fn create_test_project() -> Project {
|
|
Project {
|
|
id: None,
|
|
tenant_id: "test-tenant".to_string(),
|
|
title: "Test Project".to_string(),
|
|
description: Some("A test project".to_string()),
|
|
status: ProjectStatus::Active,
|
|
features: vec!["feature1".to_string()],
|
|
created_at: Utc::now(),
|
|
updated_at: Utc::now(),
|
|
}
|
|
}
|
|
|
|
/// Helper function to create a test task
|
|
fn create_test_task(project_id: String) -> Task {
|
|
Task {
|
|
id: None,
|
|
tenant_id: "test-tenant".to_string(),
|
|
project_id,
|
|
title: "Test Task".to_string(),
|
|
description: Some("A test task".to_string()),
|
|
status: TaskStatus::Todo,
|
|
assignee: "unassigned".to_string(),
|
|
priority: TaskPriority::Medium,
|
|
task_order: 0,
|
|
feature: Some("feature1".to_string()),
|
|
created_at: Utc::now(),
|
|
updated_at: Utc::now(),
|
|
}
|
|
}
|
|
|
|
/// Helper function to create a test agent
|
|
fn create_test_agent() -> Agent {
|
|
Agent {
|
|
id: "test-agent-1".to_string(),
|
|
role: AgentRole::Developer,
|
|
name: "Test Developer Agent".to_string(),
|
|
version: "1.0.0".to_string(),
|
|
status: AgentStatus::Active,
|
|
capabilities: vec!["rust".to_string(), "async".to_string()],
|
|
skills: vec!["backend".to_string()],
|
|
llm_provider: "claude".to_string(),
|
|
llm_model: "claude-sonnet-4".to_string(),
|
|
max_concurrent_tasks: 3,
|
|
created_at: Utc::now(),
|
|
}
|
|
}
|
|
|
|
#[tokio::test]
|
|
async fn test_health_endpoint() {
|
|
// Note: This test doesn't require a running server
|
|
// It's a placeholder for actual integration tests
|
|
// Real tests would use TestServer and require SurrealDB to be running
|
|
}
|
|
|
|
#[tokio::test]
|
|
async fn test_project_lifecycle() {
|
|
// Note: This test requires a running SurrealDB instance
|
|
// For now, it's a placeholder demonstrating the test structure
|
|
// Real implementation would:
|
|
// 1. Create a TestServer with the app
|
|
// 2. POST /api/v1/projects - create project
|
|
// 3. GET /api/v1/projects/:id - verify creation
|
|
// 4. PUT /api/v1/projects/:id - update project
|
|
// 5. DELETE /api/v1/projects/:id - delete project
|
|
}
|
|
|
|
#[tokio::test]
|
|
async fn test_task_lifecycle() {
|
|
// Note: Placeholder test
|
|
// Real implementation would test:
|
|
// 1. Create task
|
|
// 2. List tasks
|
|
// 3. Update task status
|
|
// 4. Reorder task
|
|
// 5. Delete task
|
|
}
|
|
|
|
#[tokio::test]
|
|
async fn test_agent_registration() {
|
|
// Note: Placeholder test
|
|
// Real implementation would test:
|
|
// 1. Register agent
|
|
// 2. List agents
|
|
// 3. Update agent status
|
|
// 4. Check agent health
|
|
// 5. Deregister agent
|
|
}
|
|
|
|
#[tokio::test]
|
|
async fn test_kanban_operations() {
|
|
// Note: Placeholder test
|
|
// Real implementation would test:
|
|
// 1. Create multiple tasks in different columns
|
|
// 2. Move task between columns
|
|
// 3. Reorder tasks within a column
|
|
// 4. Verify task order is maintained
|
|
}
|
|
|
|
#[tokio::test]
|
|
async fn test_error_handling() {
|
|
// Note: Placeholder test
|
|
// Real implementation would test:
|
|
// 1. Not found errors (404)
|
|
// 2. Invalid input errors (400)
|
|
// 3. Unauthorized errors (401)
|
|
// 4. Database errors (500)
|
|
}
|
|
|
|
// Note: To run these tests properly, you would need:
|
|
// 1. A test SurrealDB instance running
|
|
// 2. Test fixtures and cleanup
|
|
// 3. TestServer setup from axum_test
|
|
//
|
|
// Example of a real test structure:
|
|
//
|
|
// #[tokio::test]
|
|
// async fn test_create_project_real() {
|
|
// let app = build_test_app().await;
|
|
// let server = TestServer::new(app).unwrap();
|
|
//
|
|
// let project = create_test_project();
|
|
// let response = server
|
|
// .post("/api/v1/projects")
|
|
// .json(&project)
|
|
// .await;
|
|
//
|
|
// assert_eq!(response.status_code(), StatusCode::CREATED);
|
|
// let created: Project = response.json();
|
|
// assert_eq!(created.title, project.title);
|
|
// }
|