Vapora/crates/vapora-backend/tests/workflow_integration_test.rs
Jesús Pérez d14150da75 feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.

## Phase 5.3 Implementation

### Learning Infrastructure ( Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows

### Agent Scoring Service ( Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency

### KG Integration ( Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations

### Agent Assignment Integration ( Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock

### Profile Adapter Enhancements ( Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning

## Files Modified

### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)

### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService

### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods

## Tests Passing
- learning_profile: 7 tests 
- scoring: 5 tests 
- profile_adapter: 6 tests 
- coordinator: learning-specific tests 

## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles

## Key Design Decisions
 Recency bias: 7-day half-life with 3x weight for recent performance
 Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
 Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
 KG query limit: 100 recent executions per task-type for performance
 Async loading: load_learning_profile_from_kg supports concurrent loads

## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00

364 lines
11 KiB
Rust

// Integration tests for Phase 3: Workflow orchestration
// Tests the complete workflow system end-to-end
use std::sync::Arc;
use vapora_agents::{coordinator::AgentCoordinator, registry::AgentRegistry};
use vapora_backend::{
api::websocket::WorkflowBroadcaster,
audit::AuditTrail,
services::WorkflowService,
workflow::{
engine::WorkflowEngine,
executor::StepExecutor,
parser::WorkflowParser,
scheduler::Scheduler,
state::{Phase, StepStatus, Workflow, WorkflowStatus, WorkflowStep},
},
};
#[tokio::test]
async fn test_workflow_state_transitions() {
let mut workflow = Workflow::new("wf-1".to_string(), "Test Workflow".to_string(), vec![]);
// Test valid transitions
assert!(workflow.transition(WorkflowStatus::Planning).is_ok());
assert_eq!(workflow.status, WorkflowStatus::Planning);
assert!(workflow.transition(WorkflowStatus::InProgress).is_ok());
assert_eq!(workflow.status, WorkflowStatus::InProgress);
assert!(workflow.started_at.is_some());
assert!(workflow.transition(WorkflowStatus::Completed).is_ok());
assert_eq!(workflow.status, WorkflowStatus::Completed);
assert!(workflow.completed_at.is_some());
}
#[tokio::test]
async fn test_workflow_parser() {
let yaml = r#"
workflow:
id: test-workflow
title: Test Workflow
phases:
- id: phase1
name: Design Phase
parallel: false
estimated_hours: 2.0
steps:
- id: step1
name: Create design
agent: architect
depends_on: []
parallelizable: false
- id: phase2
name: Implementation
parallel: true
estimated_hours: 8.0
steps:
- id: step2
name: Implement backend
agent: developer
depends_on: []
parallelizable: true
- id: step3
name: Implement frontend
agent: developer
depends_on: []
parallelizable: true
"#;
let result = WorkflowParser::parse_string(yaml);
assert!(result.is_ok());
let workflow = result.unwrap();
assert_eq!(workflow.id, "test-workflow");
assert_eq!(workflow.phases.len(), 2);
assert!(workflow.phases[1].parallel);
assert_eq!(workflow.phases[1].steps.len(), 2);
}
#[tokio::test]
async fn test_dependency_resolution() {
let steps = vec![
WorkflowStep {
id: "a".to_string(),
name: "Step A".to_string(),
agent_role: "dev".to_string(),
status: StepStatus::Pending,
depends_on: vec![],
can_parallelize: true,
started_at: None,
completed_at: None,
result: None,
error: None,
},
WorkflowStep {
id: "b".to_string(),
name: "Step B".to_string(),
agent_role: "dev".to_string(),
status: StepStatus::Pending,
depends_on: vec!["a".to_string()],
can_parallelize: true,
started_at: None,
completed_at: None,
result: None,
error: None,
},
WorkflowStep {
id: "c".to_string(),
name: "Step C".to_string(),
agent_role: "dev".to_string(),
status: StepStatus::Pending,
depends_on: vec!["a".to_string()],
can_parallelize: true,
started_at: None,
completed_at: None,
result: None,
error: None,
},
];
let result = Scheduler::resolve_dependencies(&steps);
assert!(result.is_ok());
let levels = result.unwrap();
assert_eq!(levels.len(), 2);
assert_eq!(levels[0], vec!["a"]);
assert_eq!(levels[1].len(), 2); // b and c can execute in parallel
}
#[tokio::test]
async fn test_workflow_engine() {
let registry = Arc::new(AgentRegistry::new(5));
let coordinator = Arc::new(AgentCoordinator::new(registry));
let executor = StepExecutor::new(coordinator);
let engine = WorkflowEngine::new(executor);
let workflow = Workflow::new(
"engine-test".to_string(),
"Engine Test".to_string(),
vec![Phase {
id: "p1".to_string(),
name: "Phase 1".to_string(),
status: StepStatus::Pending,
parallel: false,
estimated_hours: 1.0,
steps: vec![WorkflowStep {
id: "s1".to_string(),
name: "Step 1".to_string(),
agent_role: "developer".to_string(),
status: StepStatus::Pending,
depends_on: vec![],
can_parallelize: true,
started_at: None,
completed_at: None,
result: None,
error: None,
}],
}],
);
let id = workflow.id.clone();
let result = engine.register_workflow(workflow).await;
assert!(result.is_ok());
let retrieved = engine.get_workflow(&id).await;
assert!(retrieved.is_some());
assert_eq!(retrieved.unwrap().id, id);
}
#[tokio::test]
async fn test_workflow_service_integration() {
let registry = Arc::new(AgentRegistry::new(5));
let coordinator = Arc::new(AgentCoordinator::new(registry));
let executor = StepExecutor::new(coordinator);
let engine = Arc::new(WorkflowEngine::new(executor));
let broadcaster = Arc::new(WorkflowBroadcaster::new());
let audit = Arc::new(AuditTrail::new());
let service = WorkflowService::new(engine, broadcaster, audit.clone());
let workflow = Workflow::new(
"service-test".to_string(),
"Service Test".to_string(),
vec![Phase {
id: "p1".to_string(),
name: "Test Phase".to_string(),
status: StepStatus::Pending,
parallel: false,
estimated_hours: 1.0,
steps: vec![],
}],
);
// Need at least one step for valid workflow
let workflow = Workflow::new(
"service-test".to_string(),
"Service Test".to_string(),
vec![Phase {
id: "p1".to_string(),
name: "Test Phase".to_string(),
status: StepStatus::Pending,
parallel: false,
estimated_hours: 1.0,
steps: vec![WorkflowStep {
id: "s1".to_string(),
name: "Test Step".to_string(),
agent_role: "developer".to_string(),
status: StepStatus::Pending,
depends_on: vec![],
can_parallelize: false,
started_at: None,
completed_at: None,
result: None,
error: None,
}],
}],
);
let id = workflow.id.clone();
let result = service.create_workflow(workflow).await;
assert!(result.is_ok());
// Check audit trail
let audit_entries = service.get_audit_trail(&id).await;
assert!(!audit_entries.is_empty());
}
#[tokio::test]
async fn test_websocket_broadcaster() {
let broadcaster = WorkflowBroadcaster::new();
let mut rx = broadcaster.subscribe();
let update = vapora_backend::api::websocket::WorkflowUpdate::new(
"wf-1".to_string(),
"in_progress".to_string(),
50,
"Test update".to_string(),
);
broadcaster.send_update(update.clone());
let received = rx.recv().await.unwrap();
assert_eq!(received.workflow_id, "wf-1");
assert_eq!(received.progress, 50);
}
#[tokio::test]
async fn test_audit_trail() {
let audit = AuditTrail::new();
audit
.log_event(
"wf-1".to_string(),
"workflow_started".to_string(),
"system".to_string(),
serde_json::json!({"test": "data"}),
)
.await;
let entries = audit.get_workflow_audit("wf-1").await;
assert_eq!(entries.len(), 1);
assert_eq!(entries[0].event_type, "workflow_started");
}
#[tokio::test]
async fn test_circular_dependency_detection() {
let steps = vec![
WorkflowStep {
id: "a".to_string(),
name: "A".to_string(),
agent_role: "dev".to_string(),
status: StepStatus::Pending,
depends_on: vec!["c".to_string()],
can_parallelize: false,
started_at: None,
completed_at: None,
result: None,
error: None,
},
WorkflowStep {
id: "b".to_string(),
name: "B".to_string(),
agent_role: "dev".to_string(),
status: StepStatus::Pending,
depends_on: vec!["a".to_string()],
can_parallelize: false,
started_at: None,
completed_at: None,
result: None,
error: None,
},
WorkflowStep {
id: "c".to_string(),
name: "C".to_string(),
agent_role: "dev".to_string(),
status: StepStatus::Pending,
depends_on: vec!["b".to_string()],
can_parallelize: false,
started_at: None,
completed_at: None,
result: None,
error: None,
},
];
let result = Scheduler::resolve_dependencies(&steps);
assert!(result.is_err());
}
#[tokio::test]
async fn test_workflow_progress_calculation() {
let workflow = Workflow::new(
"progress-test".to_string(),
"Progress Test".to_string(),
vec![Phase {
id: "p1".to_string(),
name: "Phase 1".to_string(),
status: StepStatus::Running,
parallel: false,
estimated_hours: 1.0,
steps: vec![
WorkflowStep {
id: "s1".to_string(),
name: "Step 1".to_string(),
agent_role: "dev".to_string(),
status: StepStatus::Completed,
depends_on: vec![],
can_parallelize: false,
started_at: None,
completed_at: None,
result: None,
error: None,
},
WorkflowStep {
id: "s2".to_string(),
name: "Step 2".to_string(),
agent_role: "dev".to_string(),
status: StepStatus::Running,
depends_on: vec![],
can_parallelize: false,
started_at: None,
completed_at: None,
result: None,
error: None,
},
WorkflowStep {
id: "s3".to_string(),
name: "Step 3".to_string(),
agent_role: "dev".to_string(),
status: StepStatus::Pending,
depends_on: vec![],
can_parallelize: false,
started_at: None,
completed_at: None,
result: None,
error: None,
},
],
}],
);
assert_eq!(workflow.progress_percent(), 33); // 1 of 3 completed
}