Vapora/migrations/004_rag.surql
Jesús Pérez d14150da75 feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.

## Phase 5.3 Implementation

### Learning Infrastructure ( Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows

### Agent Scoring Service ( Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency

### KG Integration ( Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations

### Agent Assignment Integration ( Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock

### Profile Adapter Enhancements ( Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning

## Files Modified

### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)

### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService

### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods

## Tests Passing
- learning_profile: 7 tests 
- scoring: 5 tests 
- profile_adapter: 6 tests 
- coordinator: learning-specific tests 

## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles

## Key Design Decisions
 Recency bias: 7-day half-life with 3x weight for recent performance
 Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
 Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
 KG query limit: 100 recent executions per task-type for performance
 Async loading: load_learning_profile_from_kg supports concurrent loads

## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00

66 lines
3.7 KiB
Plaintext

-- Migration 004: RAG (Retrieval-Augmented Generation)
-- Creates tables for document storage and semantic search
-- Documents table
DEFINE TABLE documents SCHEMAFULL
PERMISSIONS
FOR select WHERE tenant_id = $auth.tenant_id
FOR create, update, delete WHERE tenant_id = $auth.tenant_id;
DEFINE FIELD id ON TABLE documents TYPE record<documents>;
DEFINE FIELD tenant_id ON TABLE documents TYPE string ASSERT $value != NONE;
DEFINE FIELD project_id ON TABLE documents TYPE option<string>;
DEFINE FIELD title ON TABLE documents TYPE string ASSERT $value != NONE;
DEFINE FIELD content ON TABLE documents TYPE string ASSERT $value != NONE;
DEFINE FIELD content_type ON TABLE documents TYPE string ASSERT $value INSIDE ["markdown", "code", "text", "json"] DEFAULT "text";
DEFINE FIELD metadata ON TABLE documents TYPE object DEFAULT {};
DEFINE FIELD embedding ON TABLE documents TYPE option<array<float>>;
DEFINE FIELD source_path ON TABLE documents TYPE option<string>;
DEFINE FIELD tags ON TABLE documents TYPE array<string> DEFAULT [];
DEFINE FIELD created_at ON TABLE documents TYPE datetime DEFAULT time::now();
DEFINE FIELD updated_at ON TABLE documents TYPE datetime DEFAULT time::now() VALUE time::now();
DEFINE INDEX idx_documents_tenant ON TABLE documents COLUMNS tenant_id;
DEFINE INDEX idx_documents_project ON TABLE documents COLUMNS project_id;
DEFINE INDEX idx_documents_content_type ON TABLE documents COLUMNS content_type;
DEFINE INDEX idx_documents_tags ON TABLE documents COLUMNS tags;
-- Vector index for semantic search (HNSW)
-- Note: SurrealDB 2.x+ supports vector search with MTREE indexes
DEFINE INDEX idx_documents_embedding ON TABLE documents FIELDS embedding MTREE DIMENSION 1536;
-- Document chunks table (for large documents split into chunks)
DEFINE TABLE document_chunks SCHEMAFULL
PERMISSIONS
FOR select WHERE $parent.tenant_id = $auth.tenant_id
FOR create, update, delete WHERE $parent.tenant_id = $auth.tenant_id;
DEFINE FIELD id ON TABLE document_chunks TYPE record<document_chunks>;
DEFINE FIELD document_id ON TABLE document_chunks TYPE string ASSERT $value != NONE;
DEFINE FIELD chunk_index ON TABLE document_chunks TYPE int ASSERT $value >= 0;
DEFINE FIELD content ON TABLE document_chunks TYPE string ASSERT $value != NONE;
DEFINE FIELD embedding ON TABLE document_chunks TYPE option<array<float>>;
DEFINE FIELD token_count ON TABLE document_chunks TYPE option<int>;
DEFINE FIELD created_at ON TABLE document_chunks TYPE datetime DEFAULT time::now();
DEFINE INDEX idx_document_chunks_document ON TABLE document_chunks COLUMNS document_id;
DEFINE INDEX idx_document_chunks_document_index ON TABLE document_chunks COLUMNS document_id, chunk_index UNIQUE;
DEFINE INDEX idx_document_chunks_embedding ON TABLE document_chunks FIELDS embedding MTREE DIMENSION 1536;
-- Search history table (for analytics and improvement)
DEFINE TABLE search_history SCHEMAFULL
PERMISSIONS
FOR select WHERE tenant_id = $auth.tenant_id
FOR create WHERE tenant_id = $auth.tenant_id;
DEFINE FIELD id ON TABLE search_history TYPE record<search_history>;
DEFINE FIELD tenant_id ON TABLE search_history TYPE string ASSERT $value != NONE;
DEFINE FIELD query ON TABLE search_history TYPE string ASSERT $value != NONE;
DEFINE FIELD results_count ON TABLE search_history TYPE int DEFAULT 0;
DEFINE FIELD top_result_id ON TABLE search_history TYPE option<string>;
DEFINE FIELD search_time_ms ON TABLE search_history TYPE int;
DEFINE FIELD created_at ON TABLE search_history TYPE datetime DEFAULT time::now();
DEFINE INDEX idx_search_history_tenant ON TABLE search_history COLUMNS tenant_id;
DEFINE INDEX idx_search_history_created ON TABLE search_history COLUMNS created_at;