Vapora/crates/vapora-agents/tests/learning_profile_test.rs
Jesús Pérez d14150da75 feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.

## Phase 5.3 Implementation

### Learning Infrastructure ( Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows

### Agent Scoring Service ( Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency

### KG Integration ( Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations

### Agent Assignment Integration ( Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock

### Profile Adapter Enhancements ( Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning

## Files Modified

### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)

### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService

### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods

## Tests Passing
- learning_profile: 7 tests 
- scoring: 5 tests 
- profile_adapter: 6 tests 
- coordinator: learning-specific tests 

## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles

## Key Design Decisions
 Recency bias: 7-day half-life with 3x weight for recent performance
 Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
 Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
 KG query limit: 100 recent executions per task-type for performance
 Async loading: load_learning_profile_from_kg supports concurrent loads

## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00

167 lines
4.8 KiB
Rust

use chrono::{Duration, Utc};
use vapora_agents::{ExecutionData, LearningProfile, TaskTypeExpertise};
#[test]
fn test_per_task_type_expertise() {
let mut profile = LearningProfile::new("agent-1".to_string());
let coding_expertise = TaskTypeExpertise {
success_rate: 0.9,
total_executions: 20,
recent_success_rate: 0.95,
avg_duration_ms: 120.0,
learning_curve: Vec::new(),
confidence: 1.0,
};
profile.set_task_type_expertise("coding".to_string(), coding_expertise);
assert_eq!(profile.get_task_type_score("coding"), 0.9);
assert_eq!(profile.get_task_type_score("documentation"), 0.5); // Default
}
#[test]
fn test_recency_bias_weighting() {
let now = Utc::now();
let executions = vec![
ExecutionData {
timestamp: now - Duration::hours(1),
duration_ms: 100,
success: true,
},
ExecutionData {
timestamp: now - Duration::days(8),
duration_ms: 100,
success: false,
},
];
let expertise = TaskTypeExpertise::from_executions(executions, "coding");
// Recent success should pull average up despite old failure
assert!(expertise.recent_success_rate > 0.5);
assert!(expertise.recent_success_rate > expertise.success_rate);
}
#[test]
fn test_confidence_scaling() {
let now = Utc::now();
// Few executions = low confidence
let few_executions = vec![ExecutionData {
timestamp: now,
duration_ms: 100,
success: true,
}];
let few_expertise = TaskTypeExpertise::from_executions(few_executions, "coding");
assert!(few_expertise.confidence < 0.1);
// Many executions = high confidence
let many_executions: Vec<_> = (0..50)
.map(|i| ExecutionData {
timestamp: now - Duration::hours(i),
duration_ms: 100,
success: i % 2 == 0,
})
.collect();
let many_expertise = TaskTypeExpertise::from_executions(many_executions, "coding");
assert_eq!(many_expertise.confidence, 1.0); // Capped at 1.0
}
#[test]
fn test_learning_curve_generation() {
let now = Utc::now();
let executions = vec![
ExecutionData {
timestamp: now - Duration::hours(25),
duration_ms: 100,
success: true,
},
ExecutionData {
timestamp: now - Duration::hours(24),
duration_ms: 100,
success: true,
},
ExecutionData {
timestamp: now - Duration::hours(1),
duration_ms: 100,
success: false,
},
];
let expertise = TaskTypeExpertise::from_executions(executions, "coding");
assert!(!expertise.learning_curve.is_empty());
// Curve should be chronologically sorted
for i in 1..expertise.learning_curve.len() {
assert!(
expertise.learning_curve[i - 1].0 <= expertise.learning_curve[i].0,
"Learning curve must be chronologically sorted"
);
}
}
#[test]
fn test_execution_update() {
let now = Utc::now();
let mut expertise = TaskTypeExpertise {
success_rate: 0.8,
total_executions: 10,
recent_success_rate: 0.8,
avg_duration_ms: 100.0,
learning_curve: Vec::new(),
confidence: 0.5,
};
let execution = ExecutionData {
timestamp: now,
duration_ms: 150,
success: true,
};
expertise.update_with_execution(&execution);
assert_eq!(expertise.total_executions, 11);
assert!(expertise.success_rate > 0.8); // Success added
assert!(expertise.avg_duration_ms > 100.0); // Duration increased
}
#[test]
fn test_multiple_task_types() {
let mut profile = LearningProfile::new("agent-1".to_string());
let coding = TaskTypeExpertise {
success_rate: 0.95,
total_executions: 20,
recent_success_rate: 0.95,
avg_duration_ms: 120.0,
learning_curve: Vec::new(),
confidence: 1.0,
};
let documentation = TaskTypeExpertise {
success_rate: 0.75,
total_executions: 15,
recent_success_rate: 0.80,
avg_duration_ms: 200.0,
learning_curve: Vec::new(),
confidence: 0.75,
};
profile.set_task_type_expertise("coding".to_string(), coding);
profile.set_task_type_expertise("documentation".to_string(), documentation);
assert_eq!(profile.get_task_type_score("coding"), 0.95);
assert_eq!(profile.get_task_type_score("documentation"), 0.75);
assert_eq!(profile.get_confidence("coding"), 1.0);
assert_eq!(profile.get_confidence("documentation"), 0.75);
}
#[test]
fn test_empty_executions_default() {
let expertise = TaskTypeExpertise::from_executions(Vec::new(), "coding");
assert_eq!(expertise.success_rate, 0.5);
assert_eq!(expertise.total_executions, 0);
assert_eq!(expertise.confidence, 0.0);
}