Vapora/kubernetes
Jesús Pérez d14150da75 feat: Phase 5.3 - Multi-Agent Learning Infrastructure
Implement intelligent agent learning from Knowledge Graph execution history
with per-task-type expertise tracking, recency bias, and learning curves.

## Phase 5.3 Implementation

### Learning Infrastructure ( Complete)
- LearningProfileService with per-task-type expertise metrics
- TaskTypeExpertise model tracking success_rate, confidence, learning curves
- Recency bias weighting: recent 7 days weighted 3x higher (exponential decay)
- Confidence scoring prevents overfitting: min(1.0, executions / 20)
- Learning curves computed from daily execution windows

### Agent Scoring Service ( Complete)
- Unified AgentScore combining SwarmCoordinator + learning profiles
- Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence
- Rank agents by combined score for intelligent assignment
- Support for recency-biased scoring (recent_success_rate)
- Methods: rank_agents, select_best, rank_agents_with_recency

### KG Integration ( Complete)
- KGPersistence::get_executions_for_task_type() - query by agent + task type
- KGPersistence::get_agent_executions() - all executions for agent
- Coordinator::load_learning_profile_from_kg() - core KG→Learning integration
- Coordinator::load_all_learning_profiles() - batch load for multiple agents
- Convert PersistedExecution → ExecutionData for learning calculations

### Agent Assignment Integration ( Complete)
- AgentCoordinator uses learning profiles for task assignment
- extract_task_type() infers task type from title/description
- assign_task() scores candidates using AgentScoringService
- Fallback to load-based selection if no learning data available
- Learning profiles stored in coordinator.learning_profiles RwLock

### Profile Adapter Enhancements ( Complete)
- create_learning_profile() - initialize empty profiles
- add_task_type_expertise() - set task-type expertise
- update_profile_with_learning() - update swarm profiles from learning

## Files Modified

### vapora-knowledge-graph/src/persistence.rs (+30 lines)
- get_executions_for_task_type(agent_id, task_type, limit)
- get_agent_executions(agent_id, limit)

### vapora-agents/src/coordinator.rs (+100 lines)
- load_learning_profile_from_kg() - core KG integration method
- load_all_learning_profiles() - batch loading for agents
- assign_task() already uses learning-based scoring via AgentScoringService

### Existing Complete Implementation
- vapora-knowledge-graph/src/learning.rs - calculation functions
- vapora-agents/src/learning_profile.rs - data structures and expertise
- vapora-agents/src/scoring.rs - unified scoring service
- vapora-agents/src/profile_adapter.rs - adapter methods

## Tests Passing
- learning_profile: 7 tests 
- scoring: 5 tests 
- profile_adapter: 6 tests 
- coordinator: learning-specific tests 

## Data Flow
1. Task arrives → AgentCoordinator::assign_task()
2. Extract task_type from description
3. Query KG for task-type executions (load_learning_profile_from_kg)
4. Calculate expertise with recency bias
5. Score candidates (SwarmCoordinator + learning)
6. Assign to top-scored agent
7. Execution result → KG → Update learning profiles

## Key Design Decisions
 Recency bias: 7-day half-life with 3x weight for recent performance
 Confidence scoring: min(1.0, total_executions / 20) prevents overfitting
 Hierarchical scoring: 30% base load, 50% expertise, 20% confidence
 KG query limit: 100 recent executions per task-type for performance
 Async loading: load_learning_profile_from_kg supports concurrent loads

## Next: Phase 5.4 - Cost Optimization
Ready to implement budget enforcement and cost-aware provider selection.
2026-01-11 13:03:53 +00:00
..

VAPORA Kubernetes Manifests

Vanilla Kubernetes deployment manifests for VAPORA v1.0 (non-Istio).

Overview

These manifests deploy the complete VAPORA stack:

  • SurrealDB (StatefulSet with persistent storage)
  • NATS JetStream (Deployment with ephemeral storage)
  • Backend API (2 replicas)
  • Frontend UI (2 replicas)
  • Agents (3 replicas)
  • MCP Server (1 replica)
  • Ingress (nginx)

Prerequisites

  1. Kubernetes cluster (1.25+)
  2. kubectl configured
  3. nginx ingress controller installed
  4. Storage class available for PVCs
  5. (Optional) cert-manager for TLS

Quick Deploy

# 1. Create namespace
kubectl apply -f 00-namespace.yaml

# 2. Update secrets in 03-secrets.yaml
# Edit the file and replace all CHANGE-ME values

# 3. Apply all manifests
kubectl apply -f .

# 4. Wait for all pods to be ready
kubectl wait --for=condition=ready pod -l app -n vapora --timeout=300s

# 5. Get ingress IP/hostname
kubectl get ingress -n vapora

Manual Deploy (Ordered)

kubectl apply -f 00-namespace.yaml
kubectl apply -f 01-surrealdb.yaml
kubectl apply -f 02-nats.yaml
kubectl apply -f 03-secrets.yaml
kubectl apply -f 04-backend.yaml
kubectl apply -f 05-frontend.yaml
kubectl apply -f 06-agents.yaml
kubectl apply -f 07-mcp-server.yaml
kubectl apply -f 08-ingress.yaml

Secrets Configuration

Before deploying, update 03-secrets.yaml with real credentials:

stringData:
  jwt-secret: "$(openssl rand -base64 32)"
  anthropic-api-key: "sk-ant-xxxxx"
  openai-api-key: "sk-xxxxx"
  gemini-api-key: "xxxxx"  # Optional
  surrealdb-user: "root"
  surrealdb-pass: "$(openssl rand -base64 32)"

Ingress Configuration

Update 08-ingress.yaml with your domain:

rules:
- host: vapora.yourdomain.com  # Change this

For TLS with cert-manager:

annotations:
  cert-manager.io/cluster-issuer: "letsencrypt-prod"
tls:
- hosts:
  - vapora.yourdomain.com
  secretName: vapora-tls

Monitoring

# Check all pods
kubectl get pods -n vapora

# Check services
kubectl get svc -n vapora

# Check ingress
kubectl get ingress -n vapora

# View logs
kubectl logs -n vapora -l app=vapora-backend
kubectl logs -n vapora -l app=vapora-agents

# Check health
kubectl exec -n vapora deploy/vapora-backend -- curl localhost:8080/health

Scaling

# Scale backend
kubectl scale deployment vapora-backend -n vapora --replicas=3

# Scale agents
kubectl scale deployment vapora-agents -n vapora --replicas=5

# Scale frontend
kubectl scale deployment vapora-frontend -n vapora --replicas=3

Troubleshooting

Pods not starting

# Check events
kubectl get events -n vapora --sort-by='.lastTimestamp'

# Describe pod
kubectl describe pod -n vapora <pod-name>

# Check logs
kubectl logs -n vapora <pod-name>

Database connection issues

# Check SurrealDB is running
kubectl get pod -n vapora -l app=surrealdb

# Test connection
kubectl exec -n vapora deploy/vapora-backend -- \
  curl -v http://surrealdb:8000/health

NATS connection issues

# Check NATS is running
kubectl get pod -n vapora -l app=nats

# Check NATS logs
kubectl logs -n vapora -l app=nats

# Monitor NATS
kubectl port-forward -n vapora svc/nats 8222:8222
open http://localhost:8222

Uninstall

# Delete all resources in namespace
kubectl delete namespace vapora

# Or delete manifests individually
kubectl delete -f .

Notes

  • SurrealDB data is persisted in PVC (20Gi)
  • NATS uses ephemeral storage (data lost on pod restart)
  • All images use latest tag - update to specific versions for production
  • Default resource limits are conservative - adjust based on load
  • Frontend uses LoadBalancer service type - change to ClusterIP if using Ingress only

Architecture

Internet
    ↓
[Ingress: vapora.example.com]
    ↓
    ├─→ / → [Frontend Service] → [Frontend Pods x2]
    ├─→ /api → [Backend Service] → [Backend Pods x2]
    ├─→ /ws → [Backend Service] → [Backend Pods x2]
    └─→ /mcp → [MCP Service] → [MCP Server Pod]

Internal Services:
    [Backend] ←→ [SurrealDB StatefulSet]
    [Backend] ←→ [NATS]
    [Agents x3] ←→ [NATS]

Next Steps

After deployment:

  1. Access UI at https://vapora.example.com
  2. Check health at https://vapora.example.com/api/v1/health
  3. Monitor logs in real-time
  4. Configure external monitoring (Prometheus/Grafana)
  5. Set up backups for SurrealDB PVC
  6. Configure horizontal pod autoscaling (HPA)