Vapora/docs/integrations/rag-integration.html
Jesús Pérez 7110ffeea2
Some checks failed
Rust CI / Security Audit (push) Has been cancelled
Rust CI / Check + Test + Lint (nightly) (push) Has been cancelled
Rust CI / Check + Test + Lint (stable) (push) Has been cancelled
chore: extend doc: adr, tutorials, operations, etc
2026-01-12 03:32:47 +00:00

715 lines
28 KiB
HTML

<!DOCTYPE HTML>
<html lang="en" class="light sidebar-visible" dir="ltr">
<head>
<!-- Book generated using mdBook -->
<meta charset="UTF-8">
<title>RAG Integration - VAPORA Platform Documentation</title>
<!-- Custom HTML head -->
<meta name="description" content="Comprehensive documentation for VAPORA, an intelligent development orchestration platform built entirely in Rust.">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="theme-color" content="#ffffff">
<link rel="icon" href="../favicon.svg">
<link rel="shortcut icon" href="../favicon.png">
<link rel="stylesheet" href="../css/variables.css">
<link rel="stylesheet" href="../css/general.css">
<link rel="stylesheet" href="../css/chrome.css">
<link rel="stylesheet" href="../css/print.css" media="print">
<!-- Fonts -->
<link rel="stylesheet" href="../FontAwesome/css/font-awesome.css">
<link rel="stylesheet" href="../fonts/fonts.css">
<!-- Highlight.js Stylesheets -->
<link rel="stylesheet" id="highlight-css" href="../highlight.css">
<link rel="stylesheet" id="tomorrow-night-css" href="../tomorrow-night.css">
<link rel="stylesheet" id="ayu-highlight-css" href="../ayu-highlight.css">
<!-- Custom theme stylesheets -->
<!-- Provide site root and default themes to javascript -->
<script>
const path_to_root = "../";
const default_light_theme = "light";
const default_dark_theme = "dark";
</script>
<!-- Start loading toc.js asap -->
<script src="../toc.js"></script>
</head>
<body>
<div id="mdbook-help-container">
<div id="mdbook-help-popup">
<h2 class="mdbook-help-title">Keyboard shortcuts</h2>
<div>
<p>Press <kbd></kbd> or <kbd></kbd> to navigate between chapters</p>
<p>Press <kbd>S</kbd> or <kbd>/</kbd> to search in the book</p>
<p>Press <kbd>?</kbd> to show this help</p>
<p>Press <kbd>Esc</kbd> to hide this help</p>
</div>
</div>
</div>
<div id="body-container">
<!-- Work around some values being stored in localStorage wrapped in quotes -->
<script>
try {
let theme = localStorage.getItem('mdbook-theme');
let sidebar = localStorage.getItem('mdbook-sidebar');
if (theme.startsWith('"') && theme.endsWith('"')) {
localStorage.setItem('mdbook-theme', theme.slice(1, theme.length - 1));
}
if (sidebar.startsWith('"') && sidebar.endsWith('"')) {
localStorage.setItem('mdbook-sidebar', sidebar.slice(1, sidebar.length - 1));
}
} catch (e) { }
</script>
<!-- Set the theme before any content is loaded, prevents flash -->
<script>
const default_theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? default_dark_theme : default_light_theme;
let theme;
try { theme = localStorage.getItem('mdbook-theme'); } catch(e) { }
if (theme === null || theme === undefined) { theme = default_theme; }
const html = document.documentElement;
html.classList.remove('light')
html.classList.add(theme);
html.classList.add("js");
</script>
<input type="checkbox" id="sidebar-toggle-anchor" class="hidden">
<!-- Hide / unhide sidebar before it is displayed -->
<script>
let sidebar = null;
const sidebar_toggle = document.getElementById("sidebar-toggle-anchor");
if (document.body.clientWidth >= 1080) {
try { sidebar = localStorage.getItem('mdbook-sidebar'); } catch(e) { }
sidebar = sidebar || 'visible';
} else {
sidebar = 'hidden';
}
sidebar_toggle.checked = sidebar === 'visible';
html.classList.remove('sidebar-visible');
html.classList.add("sidebar-" + sidebar);
</script>
<nav id="sidebar" class="sidebar" aria-label="Table of contents">
<!-- populated by js -->
<mdbook-sidebar-scrollbox class="sidebar-scrollbox"></mdbook-sidebar-scrollbox>
<noscript>
<iframe class="sidebar-iframe-outer" src="../toc.html"></iframe>
</noscript>
<div id="sidebar-resize-handle" class="sidebar-resize-handle">
<div class="sidebar-resize-indicator"></div>
</div>
</nav>
<div id="page-wrapper" class="page-wrapper">
<div class="page">
<div id="menu-bar-hover-placeholder"></div>
<div id="menu-bar" class="menu-bar sticky">
<div class="left-buttons">
<label id="sidebar-toggle" class="icon-button" for="sidebar-toggle-anchor" title="Toggle Table of Contents" aria-label="Toggle Table of Contents" aria-controls="sidebar">
<i class="fa fa-bars"></i>
</label>
<button id="theme-toggle" class="icon-button" type="button" title="Change theme" aria-label="Change theme" aria-haspopup="true" aria-expanded="false" aria-controls="theme-list">
<i class="fa fa-paint-brush"></i>
</button>
<ul id="theme-list" class="theme-popup" aria-label="Themes" role="menu">
<li role="none"><button role="menuitem" class="theme" id="default_theme">Auto</button></li>
<li role="none"><button role="menuitem" class="theme" id="light">Light</button></li>
<li role="none"><button role="menuitem" class="theme" id="rust">Rust</button></li>
<li role="none"><button role="menuitem" class="theme" id="coal">Coal</button></li>
<li role="none"><button role="menuitem" class="theme" id="navy">Navy</button></li>
<li role="none"><button role="menuitem" class="theme" id="ayu">Ayu</button></li>
</ul>
<button id="search-toggle" class="icon-button" type="button" title="Search (`/`)" aria-label="Toggle Searchbar" aria-expanded="false" aria-keyshortcuts="/ s" aria-controls="searchbar">
<i class="fa fa-search"></i>
</button>
</div>
<h1 class="menu-title">VAPORA Platform Documentation</h1>
<div class="right-buttons">
<a href="../print.html" title="Print this book" aria-label="Print this book">
<i id="print-button" class="fa fa-print"></i>
</a>
<a href="https://github.com/vapora-platform/vapora" title="Git repository" aria-label="Git repository">
<i id="git-repository-button" class="fa fa-github"></i>
</a>
<a href="https://github.com/vapora-platform/vapora/edit/main/docs/src/../integrations/rag-integration.md" title="Suggest an edit" aria-label="Suggest an edit">
<i id="git-edit-button" class="fa fa-edit"></i>
</a>
</div>
</div>
<div id="search-wrapper" class="hidden">
<form id="searchbar-outer" class="searchbar-outer">
<input type="search" id="searchbar" name="searchbar" placeholder="Search this book ..." aria-controls="searchresults-outer" aria-describedby="searchresults-header">
</form>
<div id="searchresults-outer" class="searchresults-outer hidden">
<div id="searchresults-header" class="searchresults-header"></div>
<ul id="searchresults">
</ul>
</div>
</div>
<!-- Apply ARIA attributes after the sidebar and the sidebar toggle button are added to the DOM -->
<script>
document.getElementById('sidebar-toggle').setAttribute('aria-expanded', sidebar === 'visible');
document.getElementById('sidebar').setAttribute('aria-hidden', sidebar !== 'visible');
Array.from(document.querySelectorAll('#sidebar a')).forEach(function(link) {
link.setAttribute('tabIndex', sidebar === 'visible' ? 0 : -1);
});
</script>
<div id="content" class="content">
<main>
<h1 id="-rag-integration"><a class="header" href="#-rag-integration">🔍 RAG Integration</a></h1>
<h2 id="retrievable-augmented-generation-for-vapora-context"><a class="header" href="#retrievable-augmented-generation-for-vapora-context">Retrievable Augmented Generation for VAPORA Context</a></h2>
<p><strong>Version</strong>: 0.1.0
<strong>Status</strong>: Specification (VAPORA v1.0 Integration)
<strong>Purpose</strong>: RAG system from provisioning integrated into VAPORA for semantic search</p>
<hr />
<h2 id="-objetivo"><a class="header" href="#-objetivo">🎯 Objetivo</a></h2>
<p><strong>RAG (Retrieval-Augmented Generation)</strong> proporciona contexto a los agentes:</p>
<ul>
<li>✅ Agentes buscan documentación semánticamente similar</li>
<li>✅ ADRs, diseños, y guías como contexto para nuevas tareas</li>
<li>✅ Query LLM con documentación relevante</li>
<li>✅ Reducir alucinaciones, mejorar decisiones</li>
<li>✅ Sistema completo de provisioning (2,140 líneas Rust)</li>
</ul>
<hr />
<h2 id="-rag-architecture"><a class="header" href="#-rag-architecture">🏗️ RAG Architecture</a></h2>
<h3 id="components-from-provisioning"><a class="header" href="#components-from-provisioning">Components (From Provisioning)</a></h3>
<pre><code>RAG System (2,140 lines, production-ready from provisioning)
├─ Chunking Engine
│ ├─ Markdown chunks (with metadata)
│ ├─ KCL chunks (for infrastructure docs)
│ ├─ Nushell chunks (for scripts)
│ └─ Smart splitting (at headers, code blocks)
├─ Embeddings
│ ├─ Primary: OpenAI API (text-embedding-3-small)
│ ├─ Fallback: Local ONNX (nomic-embed-text)
│ ├─ Dimension: 1536-dim vectors
│ └─ Batch processing
├─ Vector Store
│ ├─ SurrealDB with HNSW index
│ ├─ Fast similarity search
│ ├─ Scalar product distance metric
│ └─ Replication for redundancy
├─ Retrieval
│ ├─ Top-K BM25 + semantic hybrid
│ ├─ Threshold filtering (relevance &gt; 0.7)
│ ├─ Context enrichment
│ └─ Ranking/re-ranking
└─ Integration
├─ Claude API with full context
├─ Agent Search tool
├─ Workflow context injection
└─ Decision-making support
</code></pre>
<h3 id="data-flow"><a class="header" href="#data-flow">Data Flow</a></h3>
<pre><code>Document Added to docs/
doc-lifecycle-manager classifies
RAG Chunking Engine
├─ Split into semantic chunks
└─ Extract metadata (title, type, date)
Embeddings Generator
├─ Generate 1536-dim vector per chunk
└─ Batch process for efficiency
Vector Store (SurrealDB HNSW)
├─ Store chunk + vector + metadata
└─ Create HNSW index
Search Ready
├─ Agent can query
├─ Semantic similarity search
└─ Fast &lt; 100ms latency
</code></pre>
<hr />
<h2 id="-rag-in-vapora"><a class="header" href="#-rag-in-vapora">🔧 RAG in VAPORA</a></h2>
<h3 id="search-tool-available-to-all-agents"><a class="header" href="#search-tool-available-to-all-agents">Search Tool (Available to All Agents)</a></h3>
<pre><pre class="playground"><code class="language-rust"><span class="boring">#![allow(unused)]
</span><span class="boring">fn main() {
</span>pub struct SearchTool {
pub vector_store: SurrealDB,
pub embeddings: EmbeddingsClient,
pub retriever: HybridRetriever,
}
impl SearchTool {
pub async fn search(
&amp;self,
query: String,
top_k: u32,
threshold: f64,
) -&gt; anyhow::Result&lt;SearchResults&gt; {
// 1. Embed query
let query_vector = self.embeddings.embed(&amp;query).await?;
// 2. Search vector store
let chunk_results = self.vector_store.search_hnsw(
query_vector,
top_k,
threshold,
).await?;
// 3. Enrich with context
let results = self.enrich_results(chunk_results).await?;
Ok(SearchResults {
query,
results,
total_chunks_searched: 1000+,
search_duration_ms: 45,
})
}
pub async fn search_with_filters(
&amp;self,
query: String,
filters: SearchFilters,
) -&gt; anyhow::Result&lt;SearchResults&gt; {
// Filter by document type, date, tags before search
let filtered_documents = self.filter_documents(&amp;filters).await?;
// ... rest of search
}
}
pub struct SearchFilters {
pub doc_type: Option&lt;Vec&lt;String&gt;&gt;, // ["adr", "guide"]
pub date_range: Option&lt;(Date, Date)&gt;,
pub tags: Option&lt;Vec&lt;String&gt;&gt;, // ["orchestrator", "performance"]
pub lifecycle_state: Option&lt;String&gt;, // "published", "archived"
}
pub struct SearchResults {
pub query: String,
pub results: Vec&lt;SearchResult&gt;,
pub total_chunks_searched: u32,
pub search_duration_ms: u32,
}
pub struct SearchResult {
pub document_id: String,
pub document_title: String,
pub chunk_text: String,
pub relevance_score: f64, // 0.0-1.0
pub metadata: HashMap&lt;String, String&gt;,
pub source_url: String,
pub snippet_context: String, // Surrounding text
}
<span class="boring">}</span></code></pre></pre>
<h3 id="agent-usage-example"><a class="header" href="#agent-usage-example">Agent Usage Example</a></h3>
<pre><pre class="playground"><code class="language-rust"><span class="boring">#![allow(unused)]
</span><span class="boring">fn main() {
</span>// Agent decides to search for context
impl DeveloperAgent {
pub async fn implement_feature(
&amp;mut self,
task: Task,
) -&gt; anyhow::Result&lt;()&gt; {
// 1. Search for similar features implemented before
let similar_features = self.search_tool.search(
format!("implement {} feature like {}", task.domain, task.type_),
top_k: 5,
threshold: 0.75,
).await?;
// 2. Extract context from results
let context_docs = similar_features.results
.iter()
.map(|r| r.chunk_text.clone())
.collect::&lt;Vec&lt;_&gt;&gt;();
// 3. Build LLM prompt with context
let prompt = format!(
"Implement the following feature:\n{}\n\nSimilar features implemented:\n{}",
task.description,
context_docs.join("\n---\n")
);
// 4. Generate code with context
let code = self.llm_router.complete(prompt).await?;
Ok(())
}
}
<span class="boring">}</span></code></pre></pre>
<h3 id="documenter-agent-integration"><a class="header" href="#documenter-agent-integration">Documenter Agent Integration</a></h3>
<pre><pre class="playground"><code class="language-rust"><span class="boring">#![allow(unused)]
</span><span class="boring">fn main() {
</span>impl DocumenterAgent {
pub async fn update_documentation(
&amp;mut self,
task: Task,
) -&gt; anyhow::Result&lt;()&gt; {
// 1. Get decisions from task
let decisions = task.extract_decisions().await?;
for decision in decisions {
// 2. Search existing ADRs to avoid duplicates
let similar_adrs = self.search_tool.search(
decision.context.clone(),
top_k: 3,
threshold: 0.8,
).await?;
// 3. Check if decision already documented
if similar_adrs.results.is_empty() {
// Create new ADR
let adr_content = format!(
"# {}\n\n## Context\n{}\n\n## Decision\n{}",
decision.title,
decision.context,
decision.chosen_option,
);
// 4. Save and index for RAG
self.db.save_adr(&amp;adr_content).await?;
self.rag_system.index_document(&amp;adr_content).await?;
}
}
Ok(())
}
}
<span class="boring">}</span></code></pre></pre>
<hr />
<h2 id="-rag-implementation-from-provisioning"><a class="header" href="#-rag-implementation-from-provisioning">📊 RAG Implementation (From Provisioning)</a></h2>
<h3 id="schema-surrealdb"><a class="header" href="#schema-surrealdb">Schema (SurrealDB)</a></h3>
<pre><code class="language-sql">-- RAG chunks table
CREATE TABLE rag_chunks SCHEMAFULL {
-- Identifiers
id: string,
document_id: string,
chunk_index: int,
-- Content
text: string,
title: string,
doc_type: string,
-- Vector
embedding: vector&lt;1536&gt;,
-- Metadata
created_date: datetime,
last_updated: datetime,
source_path: string,
tags: array&lt;string&gt;,
lifecycle_state: string,
-- Indexing
INDEX embedding ON HNSW (1536) FIELDS embedding
DISTANCE SCALAR PRODUCT
M 16
EF_CONSTRUCTION 200,
PERMISSIONS
FOR select ALLOW (true)
FOR create ALLOW (true)
FOR update ALLOW (false)
FOR delete ALLOW (false)
};
</code></pre>
<h3 id="chunking-strategy"><a class="header" href="#chunking-strategy">Chunking Strategy</a></h3>
<pre><pre class="playground"><code class="language-rust"><span class="boring">#![allow(unused)]
</span><span class="boring">fn main() {
</span>pub struct ChunkingEngine;
impl ChunkingEngine {
pub async fn chunk_document(
&amp;self,
document: Document,
) -&gt; anyhow::Result&lt;Vec&lt;Chunk&gt;&gt; {
let chunks = match document.file_type {
FileType::Markdown =&gt; self.chunk_markdown(&amp;document.content)?,
FileType::KCL =&gt; self.chunk_kcl(&amp;document.content)?,
FileType::Nushell =&gt; self.chunk_nushell(&amp;document.content)?,
_ =&gt; self.chunk_text(&amp;document.content)?,
};
Ok(chunks)
}
fn chunk_markdown(&amp;self, content: &amp;str) -&gt; anyhow::Result&lt;Vec&lt;Chunk&gt;&gt; {
let mut chunks = Vec::new();
// Split by headers
let sections = content.split(|line: &amp;str| line.starts_with('#'));
for section in sections {
// Max 500 tokens per chunk
if section.len() &gt; 500 {
// Split further
for sub_chunk in section.chunks(400) {
chunks.push(Chunk {
text: sub_chunk.to_string(),
metadata: Default::default(),
});
}
} else {
chunks.push(Chunk {
text: section.to_string(),
metadata: Default::default(),
});
}
}
Ok(chunks)
}
}
<span class="boring">}</span></code></pre></pre>
<h3 id="embeddings"><a class="header" href="#embeddings">Embeddings</a></h3>
<pre><pre class="playground"><code class="language-rust"><span class="boring">#![allow(unused)]
</span><span class="boring">fn main() {
</span>pub enum EmbeddingsProvider {
OpenAI {
api_key: String,
model: "text-embedding-3-small", // 1536 dims, fast
},
Local {
model_path: String, // ONNX model
model: "nomic-embed-text",
},
}
pub struct EmbeddingsClient {
provider: EmbeddingsProvider,
}
impl EmbeddingsClient {
pub async fn embed(&amp;self, text: &amp;str) -&gt; anyhow::Result&lt;Vec&lt;f32&gt;&gt; {
match &amp;self.provider {
EmbeddingsProvider::OpenAI { api_key, .. } =&gt; {
// Call OpenAI API
let response = reqwest::Client::new()
.post("https://api.openai.com/v1/embeddings")
.bearer_auth(api_key)
.json(&amp;serde_json::json!({
"model": "text-embedding-3-small",
"input": text,
}))
.send()
.await?;
let result: OpenAIResponse = response.json().await?;
Ok(result.data[0].embedding.clone())
},
EmbeddingsProvider::Local { model_path, .. } =&gt; {
// Use local ONNX model (nomic-embed-text)
let session = ort::Session::builder()?.commit_from_file(model_path)?;
let output = session.run(ort::inputs![text]?)?;
let embedding = output[0].try_extract_tensor()?.view().to_owned();
Ok(embedding.iter().map(|x| *x as f32).collect())
},
}
}
pub async fn embed_batch(
&amp;self,
texts: Vec&lt;String&gt;,
) -&gt; anyhow::Result&lt;Vec&lt;Vec&lt;f32&gt;&gt;&gt; {
// Batch embed for efficiency
// (Use batching API for OpenAI, etc.)
}
}
<span class="boring">}</span></code></pre></pre>
<h3 id="retrieval"><a class="header" href="#retrieval">Retrieval</a></h3>
<pre><pre class="playground"><code class="language-rust"><span class="boring">#![allow(unused)]
</span><span class="boring">fn main() {
</span>pub struct HybridRetriever {
vector_store: SurrealDB,
bm25_index: BM25Index,
}
impl HybridRetriever {
pub async fn search(
&amp;self,
query: String,
top_k: u32,
) -&gt; anyhow::Result&lt;Vec&lt;ChunkWithScore&gt;&gt; {
// 1. Semantic search (vector similarity)
let query_vector = self.embed(&amp;query).await?;
let semantic_results = self.vector_store.search_hnsw(
query_vector,
top_k * 2, // Get more for re-ranking
0.5,
).await?;
// 2. BM25 keyword search
let bm25_results = self.bm25_index.search(&amp;query, top_k * 2)?;
// 3. Merge and re-rank
let mut merged = HashMap::new();
for (i, result) in semantic_results.iter().enumerate() {
let score = 1.0 / (i as f64 + 1.0); // Rank-based score
merged.entry(result.id.clone())
.and_modify(|s: &amp;mut f64| *s += score * 0.7) // 70% weight
.or_insert(score * 0.7);
}
for (i, result) in bm25_results.iter().enumerate() {
let score = 1.0 / (i as f64 + 1.0);
merged.entry(result.id.clone())
.and_modify(|s: &amp;mut f64| *s += score * 0.3) // 30% weight
.or_insert(score * 0.3);
}
// 4. Sort and return top-k
let mut final_results: Vec&lt;_&gt; = merged.into_iter().collect();
final_results.sort_by(|a, b| b.1.partial_cmp(&amp;a.1).unwrap());
Ok(final_results.into_iter()
.take(top_k as usize)
.map(|(id, score)| {
// Fetch full chunk with this score
ChunkWithScore { id, score }
})
.collect())
}
}
<span class="boring">}</span></code></pre></pre>
<hr />
<h2 id="-indexing-workflow"><a class="header" href="#-indexing-workflow">📚 Indexing Workflow</a></h2>
<h3 id="automatic-indexing"><a class="header" href="#automatic-indexing">Automatic Indexing</a></h3>
<pre><code>File added to docs/
Git hook or workflow trigger
doc-lifecycle-manager processes
├─ Classifies document
└─ Publishes "document_added" event
RAG system subscribes
├─ Chunks document
├─ Generates embeddings
├─ Stores in SurrealDB
└─ Updates HNSW index
Agent Search Tool ready
</code></pre>
<h3 id="batch-reindexing"><a class="header" href="#batch-reindexing">Batch Reindexing</a></h3>
<pre><code class="language-bash"># Periodic full reindex (daily or on demand)
vapora rag reindex --all
# Incremental reindex (only changed docs)
vapora rag reindex --since 1d
# Rebuild HNSW index from scratch
vapora rag rebuild-index --optimize
</code></pre>
<hr />
<h2 id="-implementation-checklist"><a class="header" href="#-implementation-checklist">🎯 Implementation Checklist</a></h2>
<ul>
<li><input disabled="" type="checkbox"/>
Port RAG system from provisioning (2,140 lines)</li>
<li><input disabled="" type="checkbox"/>
Integrate with SurrealDB vector store</li>
<li><input disabled="" type="checkbox"/>
HNSW index setup + optimization</li>
<li><input disabled="" type="checkbox"/>
Chunking strategies (Markdown, KCL, Nushell)</li>
<li><input disabled="" type="checkbox"/>
Embeddings client (OpenAI + local fallback)</li>
<li><input disabled="" type="checkbox"/>
Hybrid retrieval (semantic + BM25)</li>
<li><input disabled="" type="checkbox"/>
Search tool for agents</li>
<li><input disabled="" type="checkbox"/>
doc-lifecycle-manager hooks</li>
<li><input disabled="" type="checkbox"/>
Indexing workflows</li>
<li><input disabled="" type="checkbox"/>
Batch reindexing</li>
<li><input disabled="" type="checkbox"/>
CLI: <code>vapora rag search</code>, <code>vapora rag reindex</code></li>
<li><input disabled="" type="checkbox"/>
Tests + benchmarks</li>
</ul>
<hr />
<h2 id="-success-metrics"><a class="header" href="#-success-metrics">📊 Success Metrics</a></h2>
<p>✅ Search latency &lt; 100ms (p99)
✅ Relevance score &gt; 0.8 for top results
✅ 1000+ documents indexed
✅ HNSW index memory efficient
✅ Agents find relevant context automatically
✅ No hallucinations from out-of-context queries</p>
<hr />
<p><strong>Version</strong>: 0.1.0
<strong>Status</strong>: ✅ Integration Specification Complete
<strong>Purpose</strong>: RAG system for semantic document search in VAPORA</p>
</main>
<nav class="nav-wrapper" aria-label="Page navigation">
<!-- Mobile navigation buttons -->
<a rel="prev" href="../../integrations/doc-lifecycle-integration.html" class="mobile-nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left">
<i class="fa fa-angle-left"></i>
</a>
<a rel="next prefetch" href="../../integrations/provisioning-integration.html" class="mobile-nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right">
<i class="fa fa-angle-right"></i>
</a>
<div style="clear: both"></div>
</nav>
</div>
</div>
<nav class="nav-wide-wrapper" aria-label="Page navigation">
<a rel="prev" href="../../integrations/doc-lifecycle-integration.html" class="nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left">
<i class="fa fa-angle-left"></i>
</a>
<a rel="next prefetch" href="../../integrations/provisioning-integration.html" class="nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right">
<i class="fa fa-angle-right"></i>
</a>
</nav>
</div>
<script>
window.playground_copyable = true;
</script>
<script src="../elasticlunr.min.js"></script>
<script src="../mark.min.js"></script>
<script src="../searcher.js"></script>
<script src="../clipboard.min.js"></script>
<script src="../highlight.js"></script>
<script src="../book.js"></script>
<!-- Custom JS scripts -->
</div>
</body>
</html>