Vapora/crates/vapora-agents/tests/learning_integration_test.rs
Jesús Pérez ac3f93fe1d fix: Pre-commit configuration and TOML syntax corrections
**Problems Fixed:**
- TOML syntax errors in workspace.toml (inline tables spanning multiple lines)
- TOML syntax errors in vapora.toml (invalid variable substitution syntax)
- YAML multi-document handling (kubernetes and provisioning files)
- Markdown linting issues (disabled temporarily pending review)
- Rust formatting with nightly toolchain

**Changes Made:**
1. Fixed provisioning/vapora-wrksp/workspace.toml:
   - Converted inline tables to proper nested sections
   - Lines 21-39: [storage.surrealdb], [storage.redis], [storage.nats]

2. Fixed config/vapora.toml:
   - Replaced shell-style ${VAR:-default} syntax with literal values
   - All environment-based config marked with comments for runtime override

3. Updated .pre-commit-config.yaml:
   - Added kubernetes/ and provisioning/ to check-yaml exclusions
   - Disabled markdownlint hook pending markdown file cleanup
   - Keep: rust-fmt, clippy, toml check, yaml check, end-of-file, trailing-whitespace

**All Passing Hooks:**
 Rust formatting (cargo +nightly fmt)
 Rust linting (cargo clippy)
 TOML validation
 YAML validation (with multi-document support)
 End-of-file formatting
 Trailing whitespace removal
2026-01-11 21:46:08 +00:00

412 lines
13 KiB
Rust

use chrono::{Duration, Utc};
use vapora_agents::{AgentScoringService, ExecutionData, ProfileAdapter, TaskTypeExpertise};
use vapora_swarm::messages::AgentProfile;
#[test]
fn test_end_to_end_learning_flow() {
// Simulate historical executions for agent
let now = Utc::now();
let executions: Vec<ExecutionData> = (0..20)
.map(|i| ExecutionData {
timestamp: now - Duration::days(i),
duration_ms: 100 + (i as u64 * 10),
success: i < 18, // 18 successes out of 20 = 90%
})
.collect();
// Calculate expertise from executions
let expertise = TaskTypeExpertise::from_executions(executions, "coding");
assert!((expertise.success_rate - 0.9).abs() < 0.01);
assert_eq!(expertise.total_executions, 20);
// Create learning profile for agent
let mut profile = ProfileAdapter::create_learning_profile("agent-1".to_string());
// Add expertise to profile
profile = ProfileAdapter::add_task_type_expertise(profile, "coding".to_string(), expertise);
// Verify expertise is stored
assert_eq!(profile.get_task_type_score("coding"), 0.9);
assert!(profile.get_confidence("coding") > 0.9); // 20/20 is high confidence
}
#[test]
fn test_learning_profile_improves_over_time() {
let now = Utc::now();
// Initial executions: 50% success
let initial_execs: Vec<ExecutionData> = (0..10)
.map(|i| ExecutionData {
timestamp: now - Duration::days(i * 2),
duration_ms: 100,
success: i < 5,
})
.collect();
let mut initial_expertise = TaskTypeExpertise::from_executions(initial_execs, "coding");
assert!((initial_expertise.success_rate - 0.5).abs() < 0.01);
// New successful execution
let new_exec = ExecutionData {
timestamp: now,
duration_ms: 100,
success: true,
};
initial_expertise.update_with_execution(&new_exec);
// Expertise should improve
assert!(initial_expertise.success_rate > 0.5);
assert_eq!(initial_expertise.total_executions, 11);
}
#[test]
fn test_agent_scoring_with_learning() {
// Create candidate agents
let candidates = vec![
AgentProfile {
id: "agent-a".to_string(),
roles: vec!["developer".to_string()],
capabilities: vec!["coding".to_string()],
current_load: 0.3,
success_rate: 0.8,
availability: true,
},
AgentProfile {
id: "agent-b".to_string(),
roles: vec!["developer".to_string()],
capabilities: vec!["coding".to_string()],
current_load: 0.1,
success_rate: 0.8,
availability: true,
},
];
// Create learning profiles
let mut profile_a = ProfileAdapter::create_learning_profile("agent-a".to_string());
profile_a = ProfileAdapter::add_task_type_expertise(
profile_a,
"coding".to_string(),
TaskTypeExpertise {
success_rate: 0.95,
total_executions: 50,
recent_success_rate: 0.95,
avg_duration_ms: 100.0,
learning_curve: Vec::new(),
confidence: 1.0,
},
);
let mut profile_b = ProfileAdapter::create_learning_profile("agent-b".to_string());
profile_b = ProfileAdapter::add_task_type_expertise(
profile_b,
"coding".to_string(),
TaskTypeExpertise {
success_rate: 0.70,
total_executions: 30,
recent_success_rate: 0.70,
avg_duration_ms: 120.0,
learning_curve: Vec::new(),
confidence: 1.0,
},
);
let learning_profiles = vec![
("agent-a".to_string(), profile_a),
("agent-b".to_string(), profile_b),
];
// Score agents
let ranked = AgentScoringService::rank_agents(candidates, "coding", &learning_profiles);
assert_eq!(ranked.len(), 2);
// agent-a should rank higher due to superior expertise despite higher load
assert_eq!(ranked[0].agent_id, "agent-a");
assert!(ranked[0].final_score > ranked[1].final_score);
}
#[test]
fn test_recency_bias_affects_ranking() {
let candidates = vec![
AgentProfile {
id: "agent-x".to_string(),
roles: vec!["developer".to_string()],
capabilities: vec!["coding".to_string()],
current_load: 0.3,
success_rate: 0.8,
availability: true,
},
AgentProfile {
id: "agent-y".to_string(),
roles: vec!["developer".to_string()],
capabilities: vec!["coding".to_string()],
current_load: 0.3,
success_rate: 0.8,
availability: true,
},
];
// agent-x has high overall success but recent failures
let mut profile_x = ProfileAdapter::create_learning_profile("agent-x".to_string());
profile_x = ProfileAdapter::add_task_type_expertise(
profile_x,
"coding".to_string(),
TaskTypeExpertise {
success_rate: 0.85,
total_executions: 40,
recent_success_rate: 0.60, // Recent poor performance
avg_duration_ms: 100.0,
learning_curve: Vec::new(),
confidence: 1.0,
},
);
// agent-y has consistent good recent performance
let mut profile_y = ProfileAdapter::create_learning_profile("agent-y".to_string());
profile_y = ProfileAdapter::add_task_type_expertise(
profile_y,
"coding".to_string(),
TaskTypeExpertise {
success_rate: 0.80,
total_executions: 30,
recent_success_rate: 0.90, // Recent strong performance
avg_duration_ms: 110.0,
learning_curve: Vec::new(),
confidence: 1.0,
},
);
let learning_profiles = vec![
("agent-x".to_string(), profile_x),
("agent-y".to_string(), profile_y),
];
// Rank with recency bias
let ranked =
AgentScoringService::rank_agents_with_recency(candidates, "coding", &learning_profiles);
assert_eq!(ranked.len(), 2);
// agent-y should rank higher due to recent success despite lower overall rate
assert_eq!(ranked[0].agent_id, "agent-y");
}
#[test]
fn test_confidence_prevents_overfitting() {
let candidates = vec![
AgentProfile {
id: "agent-new".to_string(),
roles: vec!["developer".to_string()],
capabilities: vec!["coding".to_string()],
current_load: 0.0,
success_rate: 0.8,
availability: true,
},
AgentProfile {
id: "agent-exp".to_string(),
roles: vec!["developer".to_string()],
capabilities: vec!["coding".to_string()],
current_load: 0.0,
success_rate: 0.8,
availability: true,
},
];
// agent-new: High expertise but low confidence (few samples)
let mut profile_new = ProfileAdapter::create_learning_profile("agent-new".to_string());
profile_new = ProfileAdapter::add_task_type_expertise(
profile_new,
"coding".to_string(),
TaskTypeExpertise {
success_rate: 1.0, // Perfect so far
total_executions: 2,
recent_success_rate: 1.0,
avg_duration_ms: 100.0,
learning_curve: Vec::new(),
confidence: 0.1, // Low confidence - only 2/20 executions
},
);
// agent-exp: Slightly lower expertise but high confidence
let mut profile_exp = ProfileAdapter::create_learning_profile("agent-exp".to_string());
profile_exp = ProfileAdapter::add_task_type_expertise(
profile_exp,
"coding".to_string(),
TaskTypeExpertise {
success_rate: 0.95,
total_executions: 50,
recent_success_rate: 0.95,
avg_duration_ms: 100.0,
learning_curve: Vec::new(),
confidence: 1.0,
},
);
let learning_profiles = vec![
("agent-new".to_string(), profile_new),
("agent-exp".to_string(), profile_exp),
];
let ranked = AgentScoringService::rank_agents(candidates, "coding", &learning_profiles);
// agent-exp should rank higher despite slightly lower expertise due to
// confidence weighting
assert_eq!(ranked[0].agent_id, "agent-exp");
}
#[test]
fn test_multiple_task_types_independent() {
let mut profile = ProfileAdapter::create_learning_profile("agent-1".to_string());
// Agent excels at coding
let coding_exp = TaskTypeExpertise {
success_rate: 0.95,
total_executions: 30,
recent_success_rate: 0.95,
avg_duration_ms: 100.0,
learning_curve: Vec::new(),
confidence: 1.0,
};
// Agent struggles with documentation
let docs_exp = TaskTypeExpertise {
success_rate: 0.60,
total_executions: 20,
recent_success_rate: 0.65,
avg_duration_ms: 250.0,
learning_curve: Vec::new(),
confidence: 1.0,
};
profile = ProfileAdapter::add_task_type_expertise(profile, "coding".to_string(), coding_exp);
profile =
ProfileAdapter::add_task_type_expertise(profile, "documentation".to_string(), docs_exp);
// Verify independence
assert_eq!(profile.get_task_type_score("coding"), 0.95);
assert_eq!(profile.get_task_type_score("documentation"), 0.60);
}
#[tokio::test]
async fn test_coordinator_assignment_with_learning_scores() {
use std::sync::Arc;
use vapora_agents::{AgentCoordinator, AgentMetadata, AgentRegistry};
// Create registry with test agents
let registry = Arc::new(AgentRegistry::new(10));
// Register two agents for developer role
let agent_a = AgentMetadata::new(
"developer".to_string(),
"Agent A - Coding Specialist".to_string(),
"claude".to_string(),
"claude-opus-4-5".to_string(),
vec!["coding".to_string(), "testing".to_string()],
);
let agent_b = AgentMetadata::new(
"developer".to_string(),
"Agent B - Generalist".to_string(),
"claude".to_string(),
"claude-sonnet-4".to_string(),
vec!["coding".to_string(), "documentation".to_string()],
);
let agent_a_id = agent_a.id.clone();
let agent_b_id = agent_b.id.clone();
registry.register_agent(agent_a).ok();
registry.register_agent(agent_b).ok();
// Create coordinator
let coordinator = AgentCoordinator::with_registry(registry);
// Create learning profiles: Agent A excels at coding, Agent B is mediocre
let now = Utc::now();
let agent_a_executions: Vec<ExecutionData> = (0..20)
.map(|i| ExecutionData {
timestamp: now - Duration::days(i),
duration_ms: 100,
success: i < 19, // 95% success rate
})
.collect();
let agent_b_executions: Vec<ExecutionData> = (0..20)
.map(|i| ExecutionData {
timestamp: now - Duration::days(i),
duration_ms: 100,
success: i < 14, // 70% success rate
})
.collect();
let agent_a_expertise = TaskTypeExpertise::from_executions(agent_a_executions, "coding");
let agent_b_expertise = TaskTypeExpertise::from_executions(agent_b_executions, "coding");
let mut agent_a_profile = ProfileAdapter::create_learning_profile(agent_a_id.clone());
agent_a_profile = ProfileAdapter::add_task_type_expertise(
agent_a_profile,
"coding".to_string(),
agent_a_expertise,
);
let mut agent_b_profile = ProfileAdapter::create_learning_profile(agent_b_id.clone());
agent_b_profile = ProfileAdapter::add_task_type_expertise(
agent_b_profile,
"coding".to_string(),
agent_b_expertise,
);
// Update coordinator with learning profiles
coordinator
.update_learning_profile(&agent_a_id, agent_a_profile)
.ok();
coordinator
.update_learning_profile(&agent_b_id, agent_b_profile)
.ok();
// Assign a coding task
let _task_id = coordinator
.assign_task(
"developer",
"Implement authentication module".to_string(),
"Create secure login and token validation".to_string(),
"Security critical".to_string(),
2,
)
.await
.expect("Should assign task");
// Get the registry to verify which agent was selected
let registry = coordinator.registry();
let agent_a_tasks = registry
.list_all()
.iter()
.find(|a| a.id == agent_a_id)
.map(|a| a.current_tasks)
.unwrap_or(0);
let agent_b_tasks = registry
.list_all()
.iter()
.find(|a| a.id == agent_b_id)
.map(|a| a.current_tasks)
.unwrap_or(0);
// Agent A (higher expertise in coding) should have been selected
assert!(
agent_a_tasks > 0,
"Agent A (coding specialist) should have 1+ tasks"
);
assert_eq!(agent_b_tasks, 0, "Agent B (generalist) should have 0 tasks");
// Verify learning profiles are stored
let stored_profiles = coordinator.get_all_learning_profiles();
assert!(
stored_profiles.contains_key(&agent_a_id),
"Agent A profile should be stored"
);
assert!(
stored_profiles.contains_key(&agent_b_id),
"Agent B profile should be stored"
);
}