perfspec-learning/about.md

42 lines
2.5 KiB
Markdown
Raw Normal View History

2025-01-27 10:28:57 +00:00
---
gitea: none
include_toc: true
---
# PerfSPEC Learning Phase - ABOUT
2025-01-27 07:07:22 +00:00
2025-01-27 17:18:11 +00:00
Based in [PrefSPEC: Performance Profiling-based Proactive Security Policy Enforcement for Containers](https://ieeexplore.ieee.org/document/10577533) document presented in [1], this repository contains source files used to generate and process data.
2025-01-27 07:07:22 +00:00
2025-01-27 19:24:19 +00:00
For more info use:
2025-01-27 07:07:22 +00:00
2025-01-27 19:24:19 +00:00
- [PrefSPEC main description](Readme.md)
- [PrefSPEC introduction](intro.md)
- [PrefSPEC reference document](PerfSPEC.pdf)
- [Presentación in Spanish](presentacion.pdf)
- [How to install](https://repo.jesusperez.pro/jesus/perfspec-learning/src/branch/main/install.md)
- [Autogenerated graph view of actions and events distribution](actions_distribution.pdf)
2025-01-27 07:07:22 +00:00
<div style="margin: auto">
<a target="_blank" href="perfspec-learning/src/branch/main/presentacion.pdf"><img src="imgs/prefSPEC-learning.png" width="800"></a>
</div>
2025-01-27 10:28:57 +00:00
# What is done so far ?
2025-01-27 07:07:22 +00:00
2025-01-27 19:10:39 +00:00
- [X] Good look and feel and interactions among processing, analisys and presentation layers
2025-01-27 19:24:19 +00:00
- [X] Use better software packages management like [uv](https://docs.astral.sh/uv/) to complement Python **pip**
- [X] Use an <u>>open</u> and compatible notebook like [Marimo](https://marimo.io/) to support alternative dataframes engines like [Polars](https://pola.rs/) rather than [Pandas](https://pandas.pydata.org/)
2025-01-27 19:10:39 +00:00
- [X] Use settings and structures to play with different settinigs and options
2025-01-27 19:24:19 +00:00
- [X] Implement one customized [LSTM](https://en.wikipedia.org/wiki/Long_short-term_memory) model within notebooks
- [X] Use of different metrics to apply to the training models with custumezable adjustments and checkpoints
2025-01-27 18:13:30 +00:00
- [X] Use notebooks as python scripts for command-line use cases like collect predictions or automatic train models
- [X] Use [Dry](https://en.wikipedia.org/wiki/Don%27t_repeat_yourself) to reuse code and centralize common tasks like settings or loading resources. This is main use and existence of [lib_perfspec.py](learning/python/lib_perfspec.py)
2025-01-27 19:24:19 +00:00
- [X] Splitting basic tasks among several specific **notebooks**:
2025-01-27 18:13:30 +00:00
- **Preprocessing data** collection to generate clean and usefull (critical actions) info to train models and ranking [prepare_perfspec.py](learning/python/prepare_perfspec.py)
- **Train models** to get predictions [train_perfspec.py](learning/python/train_perfspec.py)
- **Get predictions** from existing models [run_perfspec.py](learning/python/run_perfspec.py)
- **Review and analisys** trained models for better results [model_perfspec.py](learning/python/model_perfspec.py)
2025-01-27 07:07:22 +00:00
2025-01-27 10:28:57 +00:00
# Plans
2025-01-27 07:07:22 +00:00
2025-01-27 10:28:57 +00:00
# In Review