From 8274609ad19c319db00fdd1bff2abe4f31650ff1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jes=C3=BAs=20P=C3=A9rez=20Lorenzo?= Date: Mon, 27 Jan 2025 06:52:20 +0000 Subject: [PATCH] chore: fix CustomCallback and isinstance of History --- learning/python/train_perfspec.py | 53 +++++++++++++++++++++---------- 1 file changed, 36 insertions(+), 17 deletions(-) diff --git a/learning/python/train_perfspec.py b/learning/python/train_perfspec.py index 63fe262..be24a7b 100644 --- a/learning/python/train_perfspec.py +++ b/learning/python/train_perfspec.py @@ -1,6 +1,15 @@ +# /// script +# requires-python = ">=3.13" +# dependencies = [ +# "keras==3.8.0", +# "marimo", +# "numpy==2.2.2", +# ] +# /// + import marimo -__generated_with = "0.10.16" +__generated_with = "0.10.17" app = marimo.App(width="medium") @@ -458,15 +467,21 @@ def f1_score_metric(PrecisionMetric, RecallMetric, keras, mo, tf): @app.cell(hide_code=True) -def custom_validation_metrics(X_val, mo, tf, y_val): +def custom_validation_metrics(mo, tf): #Custom callback to compute metrics on validation data class CustomValidationMetrics(tf.keras.callbacks.Callback): + def __init__(self, X_val, y_val): + super().__init__() # Initialize the parent class + self.X_val = X_val + self.y_val = y_val + def on_epoch_end(self, epoch, logs=None): - val_predictions = self.model.predict(X_val, verbose=0) + val_predictions = self.model.predict(self.X_val, verbose=0) val_predictions = (val_predictions > 0.5).astype(int) # Binarize predictions - precision = tf.keras.metrics.Precision()(y_val, val_predictions) - recall = tf.keras.metrics.Recall()(y_val, val_predictions) + # Compute precision, recall, and f1-score + precision = tf.keras.metrics.Precision()(self.y_val, val_predictions) + recall = tf.keras.metrics.Recall()(self.y_val, val_predictions) f1_score = 2 * (precision * recall) / (precision + recall + 1e-7) print(f"\nEpoch {epoch + 1} Validation Metrics - Precision: {precision:.4f}, Recall: {recall:.4f}, F1 Score: {f1_score:.4f}") @@ -543,7 +558,7 @@ def show_train_model_shape(mo, perfspec, prepare_train, verbose): @app.cell(hide_code=True) -def make_model(mo, np, perfspec): +def make_model(CustomValidationMetrics, mo, np, perfspec): # Define the LSTM model def make_model(X=[],y=[],label_encoder=[], encoded_actions=[]): if len(X) == 0 or len(y) == 0: @@ -569,13 +584,13 @@ def make_model(mo, np, perfspec): perfspec['vars']['model'] = Sequential( [ #Embedding(input_dim=vocab_size, output_dim=embedding_dim), + Input(shape=(perfspec['settings']['sequence_length'], 1)), LSTM( perfspec['settings']['lstm_units_1'], return_sequences=True, recurrent_dropout=perfspec['settings']['dropout_rate'], - #input_shape = (2,vocab_size), - ), - Input(shape=(perfspec['settings']['sequence_length'], 1)), + input_shape=(perfspec['settings']['sequence_length'], 1), + ), LSTM( perfspec['settings']['lstm_units_2'], return_sequences=False, @@ -622,11 +637,12 @@ def make_model(mo, np, perfspec): # Callbacks early_stopping = EarlyStopping( - monitor="val_loss", patience=5, restore_best_weights=True + monitor="val_loss", patience=10, restore_best_weights=True ) lr_reduction = ReduceLROnPlateau( - monitor="val_loss", patience=3, factor=0.5, min_lr=0.0001 + monitor="val_loss", patience=8, factor=0.8, min_lr=0.0001 ) + custom_metrics_callback = CustomValidationMetrics(X, y) if perfspec['settings']['checkpoint_mode'] == "weights": # Save only the weights of the model instead of the full model. checkpoint = ModelCheckpoint( @@ -645,8 +661,9 @@ def make_model(mo, np, perfspec): verbose=1 # Print messages when saving ) - callbacks=[early_stopping,lr_reduction] #,CustomValidationMetrics] - callbacks=[] #,CustomValidationMetrics] + callbacks=[early_stopping,lr_reduction] + callbacks=[early_stopping,lr_reduction] + callbacks.append(custom_metrics_callback) if checkpoint != None: callbacks.append(checkpoint) @@ -676,7 +693,7 @@ def make_model(mo, np, perfspec): This is where **model** is creates and **fit** - Saved in `perfspec['vars'] as `model` and `history` + Saved in `perfspec['vars']` as `model` and `history` """ ) return (make_model,) @@ -791,10 +808,11 @@ def perfspec_save_model(Path, mo, perfspec): def perfspec_plot_history(Path, mo): def plot_history(perfspec): import json + from keras.src.callbacks import History if 'vars' not in perfspec: return None if perfspec['vars']['history'] != None: - if 'history' in perfspec['vars']['history']: + if isinstance(perfspec['vars']['history'], History): _model_history = perfspec['vars']['history'].history else: _model_history = perfspec['vars']['history'] @@ -993,8 +1011,9 @@ def perfspec_evaluate_model(Path, mo, np, prepare_train): def history_info(perfspec): import json + from keras.src.callbacks import History if perfspec['vars']['history'] != None: - if 'history' in perfspec['vars']['history']: + if isinstance(perfspec['vars']['history'], History): model_history = perfspec['vars']['history'].history else: model_history = perfspec['vars']['history'] @@ -1007,7 +1026,7 @@ def perfspec_evaluate_model(Path, mo, np, prepare_train): model_history = json.load(history_file) if model_history != None: from prettytable import PrettyTable - rain_loss = model_history['loss'] + train_loss = model_history['loss'] val_loss = model_history['val_loss'] train_acc = model_history['accuracy'] val_acc = model_history['val_accuracy']