Compare commits
10 Commits
867404c1f3
...
18cf59ce70
Author | SHA1 | Date | |
---|---|---|---|
![]() |
18cf59ce70 | ||
![]() |
3709be1d77 | ||
![]() |
a268e48183 | ||
![]() |
0e720813dd | ||
![]() |
739981e16d | ||
![]() |
821a68b4dd | ||
![]() |
8274609ad1 | ||
![]() |
1e6d04c816 | ||
![]() |
f87367b869 | ||
![]() |
a7a226608c |
1
.gitignore
vendored
1
.gitignore
vendored
@ -7,3 +7,4 @@ workspace.code-workspace
|
||||
.VSCodeCounter
|
||||
wrks
|
||||
tmp
|
||||
__pycache__
|
||||
|
57
about.md
Normal file
57
about.md
Normal file
@ -0,0 +1,57 @@
|
||||
# PerfSPEC Learning Phase
|
||||
|
||||
Based in [PrefSPEC: Performance Profiling-based Proactive Security Policy Enforcement for Containers](https://ieeexplore.ieee.org/document/10577533) document presented in [1], thir repository contains source files used to generate and process data.
|
||||
|
||||
[PrefSPEC document](PerfSPEC.pdf)
|
||||
|
||||
[Presentación in Spanish](presentacion.pdf)
|
||||
|
||||
<div style="margin: auto">
|
||||
<a target="_blank" href="perfspec-learning/src/branch/main/presentacion.pdf"><img src="imgs/prefSPEC-learning.png" width="800"></a>
|
||||
</div>
|
||||
|
||||
__PerfSPEC__ has three phases:
|
||||
|
||||
- Ranking
|
||||
- Learning
|
||||
- Runtime
|
||||
|
||||
This repository is focused in __Learning__ phase with attention on:
|
||||
|
||||
- Event logs info load and process
|
||||
- Predictive learning model
|
||||
|
||||
> Note: It is considered that __event data collection__ in `raw-audit-logs.log.gz` are realistic and representative to simulate
|
||||
administrative operations.
|
||||
|
||||
## Files
|
||||
|
||||
- `raw-audit-logs.log` contains raw Kubernetes audit logs collected using the `audit-policy.yaml` audit policy.
|
||||
|
||||
Tools are distributed in directories:
|
||||
|
||||
- [Collect](collect)
|
||||
- [Process](process)
|
||||
- [Learning](learning)
|
||||
|
||||
As some tasks can be used in [Python](https://python.org) or [Rust](https://www.rust-lang.org/) there are directories for each programming languge inside directories tasks.
|
||||
|
||||
Each `task/programming-language` may have a __data__ directory where processing output files is generated.
|
||||
|
||||
### Collect data
|
||||
|
||||
If you wish to [collect](collect) your own dataset, there are several source files that might help:
|
||||
|
||||
- `collect/collect.py` is a script to trigger the installation and uninstallation of public Helm repositories.
|
||||
- `collect/helm-charts.json` is a backup of Helm charts used at the time of the collection.
|
||||
|
||||
### Process data
|
||||
|
||||
|
||||
### Learning
|
||||
|
||||
|
||||
|
||||
## Reference
|
||||
|
||||
[1]: [H. Kermabon-Bobinnec et al., "PerfSPEC: Performance Profiling-based Proactive Security Policy Enforcement for Containers," in IEEE Transactions on Dependable and Secure Computing, doi: 10.1109/TDSC.2024.3420712.](https://ieeexplore.ieee.org/document/10577533)
|
Binary file not shown.
16564
data/audit-logs.csv
16564
data/audit-logs.csv
File diff suppressed because it is too large
Load Diff
BIN
data_sample.tar.xz
Normal file
BIN
data_sample.tar.xz
Normal file
Binary file not shown.
57
intro.md
Normal file
57
intro.md
Normal file
@ -0,0 +1,57 @@
|
||||
# PerfSPEC Learning Phase INTRO
|
||||
|
||||
Based in [PrefSPEC: Performance Profiling-based Proactive Security Policy Enforcement for Containers](https://ieeexplore.ieee.org/document/10577533) document presented in [1], thir repository contains source files used to generate and process data.
|
||||
|
||||
[PrefSPEC document](PerfSPEC.pdf)
|
||||
|
||||
[Presentación in Spanish](presentacion.pdf)
|
||||
|
||||
<div style="margin: auto">
|
||||
<a target="_blank" href="perfspec-learning/src/branch/main/presentacion.pdf"><img src="imgs/prefSPEC-learning.png" width="800"></a>
|
||||
</div>
|
||||
|
||||
__PerfSPEC__ has three phases:
|
||||
|
||||
- Ranking
|
||||
- Learning
|
||||
- Runtime
|
||||
|
||||
This repository is focused in __Learning__ phase with attention on:
|
||||
|
||||
- Event logs info load and process
|
||||
- Predictive learning model
|
||||
|
||||
> Note: It is considered that __event data collection__ in `raw-audit-logs.log.gz` are realistic and representative to simulate
|
||||
administrative operations.
|
||||
|
||||
## Files
|
||||
|
||||
- `raw-audit-logs.log` contains raw Kubernetes audit logs collected using the `audit-policy.yaml` audit policy.
|
||||
|
||||
Tools are distributed in directories:
|
||||
|
||||
- [Collect](collect)
|
||||
- [Process](process)
|
||||
- [Learning](learning)
|
||||
|
||||
As some tasks can be used in [Python](https://python.org) or [Rust](https://www.rust-lang.org/) there are directories for each programming languge inside directories tasks.
|
||||
|
||||
Each `task/programming-language` may have a __data__ directory where processing output files is generated.
|
||||
|
||||
### Collect data
|
||||
|
||||
If you wish to [collect](collect) your own dataset, there are several source files that might help:
|
||||
|
||||
- `collect/collect.py` is a script to trigger the installation and uninstallation of public Helm repositories.
|
||||
- `collect/helm-charts.json` is a backup of Helm charts used at the time of the collection.
|
||||
|
||||
### Process data
|
||||
|
||||
|
||||
### Learning
|
||||
|
||||
|
||||
|
||||
## Reference
|
||||
|
||||
[1]: [H. Kermabon-Bobinnec et al., "PerfSPEC: Performance Profiling-based Proactive Security Policy Enforcement for Containers," in IEEE Transactions on Dependable and Secure Computing, doi: 10.1109/TDSC.2024.3420712.](https://ieeexplore.ieee.org/document/10577533)
|
@ -1,6 +1,6 @@
|
||||
import marimo
|
||||
|
||||
__generated_with = "0.10.16"
|
||||
__generated_with = "0.10.17"
|
||||
app = marimo.App(width="medium")
|
||||
|
||||
|
||||
@ -82,7 +82,7 @@ def perfspec_vars(app_vars, mo):
|
||||
|
||||
perfspec = dict(
|
||||
defaults = dict(
|
||||
epochs=400,
|
||||
epochs=300,
|
||||
train_size=0.8,
|
||||
sequence_length=2,
|
||||
model_path="perfSPEC_model.keras",
|
||||
|
@ -1,6 +1,15 @@
|
||||
# /// script
|
||||
# requires-python = ">=3.13"
|
||||
# dependencies = [
|
||||
# "keras==3.8.0",
|
||||
# "marimo",
|
||||
# "numpy==2.2.2",
|
||||
# ]
|
||||
# ///
|
||||
|
||||
import marimo
|
||||
|
||||
__generated_with = "0.10.16"
|
||||
__generated_with = "0.10.17"
|
||||
app = marimo.App(width="medium")
|
||||
|
||||
|
||||
@ -458,15 +467,21 @@ def f1_score_metric(PrecisionMetric, RecallMetric, keras, mo, tf):
|
||||
|
||||
|
||||
@app.cell(hide_code=True)
|
||||
def custom_validation_metrics(X_val, mo, tf, y_val):
|
||||
def custom_validation_metrics(mo, tf):
|
||||
#Custom callback to compute metrics on validation data
|
||||
class CustomValidationMetrics(tf.keras.callbacks.Callback):
|
||||
def __init__(self, X_val, y_val):
|
||||
super().__init__() # Initialize the parent class
|
||||
self.X_val = X_val
|
||||
self.y_val = y_val
|
||||
|
||||
def on_epoch_end(self, epoch, logs=None):
|
||||
val_predictions = self.model.predict(X_val, verbose=0)
|
||||
val_predictions = self.model.predict(self.X_val, verbose=0)
|
||||
val_predictions = (val_predictions > 0.5).astype(int) # Binarize predictions
|
||||
|
||||
precision = tf.keras.metrics.Precision()(y_val, val_predictions)
|
||||
recall = tf.keras.metrics.Recall()(y_val, val_predictions)
|
||||
# Compute precision, recall, and f1-score
|
||||
precision = tf.keras.metrics.Precision()(self.y_val, val_predictions)
|
||||
recall = tf.keras.metrics.Recall()(self.y_val, val_predictions)
|
||||
f1_score = 2 * (precision * recall) / (precision + recall + 1e-7)
|
||||
|
||||
print(f"\nEpoch {epoch + 1} Validation Metrics - Precision: {precision:.4f}, Recall: {recall:.4f}, F1 Score: {f1_score:.4f}")
|
||||
@ -543,7 +558,7 @@ def show_train_model_shape(mo, perfspec, prepare_train, verbose):
|
||||
|
||||
|
||||
@app.cell(hide_code=True)
|
||||
def make_model(mo, np, perfspec):
|
||||
def make_model(CustomValidationMetrics, mo, np, perfspec):
|
||||
# Define the LSTM model
|
||||
def make_model(X=[],y=[],label_encoder=[], encoded_actions=[]):
|
||||
if len(X) == 0 or len(y) == 0:
|
||||
@ -569,13 +584,13 @@ def make_model(mo, np, perfspec):
|
||||
perfspec['vars']['model'] = Sequential(
|
||||
[
|
||||
#Embedding(input_dim=vocab_size, output_dim=embedding_dim),
|
||||
Input(shape=(perfspec['settings']['sequence_length'], 1)),
|
||||
LSTM(
|
||||
perfspec['settings']['lstm_units_1'],
|
||||
return_sequences=True,
|
||||
recurrent_dropout=perfspec['settings']['dropout_rate'],
|
||||
#input_shape = (2,vocab_size),
|
||||
),
|
||||
Input(shape=(perfspec['settings']['sequence_length'], 1)),
|
||||
input_shape=(perfspec['settings']['sequence_length'], 1),
|
||||
),
|
||||
LSTM(
|
||||
perfspec['settings']['lstm_units_2'],
|
||||
return_sequences=False,
|
||||
@ -622,11 +637,12 @@ def make_model(mo, np, perfspec):
|
||||
|
||||
# Callbacks
|
||||
early_stopping = EarlyStopping(
|
||||
monitor="val_loss", patience=5, restore_best_weights=True
|
||||
monitor="val_loss", patience=10, restore_best_weights=True
|
||||
)
|
||||
lr_reduction = ReduceLROnPlateau(
|
||||
monitor="val_loss", patience=3, factor=0.5, min_lr=0.0001
|
||||
monitor="val_loss", patience=8, factor=0.8, min_lr=0.0001
|
||||
)
|
||||
custom_metrics_callback = CustomValidationMetrics(X, y)
|
||||
if perfspec['settings']['checkpoint_mode'] == "weights":
|
||||
# Save only the weights of the model instead of the full model.
|
||||
checkpoint = ModelCheckpoint(
|
||||
@ -645,8 +661,9 @@ def make_model(mo, np, perfspec):
|
||||
verbose=1 # Print messages when saving
|
||||
)
|
||||
|
||||
callbacks=[early_stopping,lr_reduction] #,CustomValidationMetrics]
|
||||
callbacks=[] #,CustomValidationMetrics]
|
||||
callbacks=[early_stopping,lr_reduction]
|
||||
callbacks=[early_stopping,lr_reduction]
|
||||
callbacks.append(custom_metrics_callback)
|
||||
if checkpoint != None:
|
||||
callbacks.append(checkpoint)
|
||||
|
||||
@ -676,7 +693,7 @@ def make_model(mo, np, perfspec):
|
||||
|
||||
This is where **model** is creates and **fit**
|
||||
|
||||
Saved in `perfspec['vars'] as `model` and `history`
|
||||
Saved in `perfspec['vars']` as `model` and `history`
|
||||
"""
|
||||
)
|
||||
return (make_model,)
|
||||
@ -791,10 +808,11 @@ def perfspec_save_model(Path, mo, perfspec):
|
||||
def perfspec_plot_history(Path, mo):
|
||||
def plot_history(perfspec):
|
||||
import json
|
||||
from keras.src.callbacks import History
|
||||
if 'vars' not in perfspec:
|
||||
return None
|
||||
if perfspec['vars']['history'] != None:
|
||||
if 'history' in perfspec['vars']['history']:
|
||||
if isinstance(perfspec['vars']['history'], History):
|
||||
_model_history = perfspec['vars']['history'].history
|
||||
else:
|
||||
_model_history = perfspec['vars']['history']
|
||||
@ -993,8 +1011,9 @@ def perfspec_evaluate_model(Path, mo, np, prepare_train):
|
||||
|
||||
def history_info(perfspec):
|
||||
import json
|
||||
from keras.src.callbacks import History
|
||||
if perfspec['vars']['history'] != None:
|
||||
if 'history' in perfspec['vars']['history']:
|
||||
if isinstance(perfspec['vars']['history'], History):
|
||||
model_history = perfspec['vars']['history'].history
|
||||
else:
|
||||
model_history = perfspec['vars']['history']
|
||||
@ -1007,7 +1026,7 @@ def perfspec_evaluate_model(Path, mo, np, prepare_train):
|
||||
model_history = json.load(history_file)
|
||||
if model_history != None:
|
||||
from prettytable import PrettyTable
|
||||
rain_loss = model_history['loss']
|
||||
train_loss = model_history['loss']
|
||||
val_loss = model_history['val_loss']
|
||||
train_acc = model_history['accuracy']
|
||||
val_acc = model_history['val_accuracy']
|
||||
|
Binary file not shown.
BIN
raw-audit-logs.log.xz
Normal file
BIN
raw-audit-logs.log.xz
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user