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Abstract—Container environments provide cloud native applications with scalability, flexibility, and portable support. As a popular container
orchestrator, Kubernetes facilitates automatic deployment and maintenance of a large number of containerized applications. However,
potential misconfigurations, vulnerabilities, or implementation flaws may empower attackers to exploit the Kubernetes cluster. Although
existing solutions such as runtime security policy enforcement may prevent an attack, they can be inefficient in large scale container environ-
ments. In this paper, we propose a performance profiling-based proactive security policy enforcement solution, namely, PerfSPEC. First, we
accelerate the proactivization of policies (which typically requires significant manual effort) by proposing to profile and rank existing policies
according to their induced overhead. This allows us to better focus our efforts and greatly improve the overall response time (e.g., by 98%
in contrast to less than 49%). Then, we address the performance limitations of existing solutions by leveraging learning-based approaches
to predict future events and compute their verification results in advance. As a result, PerfSPEC achieves a viable response time (e.g., less
than 10 ms in contrast to 600 ms with one of the most popular existing approaches) even for large container environments (up to 800 Pods).

Index Terms—Cloud Security, Proactive Security, Kubernetes, Policy Enforcement, Containers.
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1 INTRODUCTION

CONTAINERS are becoming a standard for delivering
cloud services while ensuring scalability, reliability, and

observability [1]. The increased popularity of containerizing
applications (e.g., in 5G mobile networks [2]) made them
the main target of various security attacks exploiting miscon-
figurations and/or vulnerabilities. In this context, container
orchestrators (e.g., Kubernetes [3]) are playing a central role in
automating the deployment, scaling, and management of large
numbers of containerized applications. Thus, if an adversary
succeeds to compromise the orchestrator, (s)he can control
the entire container platform, host command and control (C2)
servers, build a botnet, or steal sensitive data.

To prevent such malicious behaviour, security policies
can be enforced with different existing solutions, whose
limitations are as follows. First, retroactive approaches (e.g., [4],
[5]) detect security breaches after the fact, potentially resulting
in irreversible damages (e.g., denial of service or informa-
tion leakage). Second, intercept-and-check approaches (e.g.,
OPA/Gatekeeper [6], the most popular solution for runtime
security policy enforcement in Kubernetes [7]) enforce security
at runtime by intercepting and verifying each user request
against all applicable security policies. While those runtime
approaches can naturally prevent irreversible damages, they
can become impractical in large and highly dynamic container
environments (as explained below). Finally, proactive ap-
proaches (e.g., [8]) can help coping with those challenges and
reducing the response time. However, proactivization (i.e., pre-
computing in advance) of runtime enforcement solutions may
require significant manual effort. In particular, as one of the
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most popular solutions for Kubernetes security enforcement,
OPA/Gatekeeper suffers from the following limitations.

• First, the verification of multiple policies for each request
using a reactive approach like OPA/Gatekeeper induces
significant delay that increases with the size of the cluster
and the number of policies (e.g., OPA/Gatekeeper can
cause up to 600 ms delay in a Kubernetes cluster of 800
Pods, as reported in Section 6). A significant part of this
delay is due to the need to collect and process input data
from the cluster at runtime to verify each policy. This may
prohibit the use of such solutions in time-sensitive scenarios
(e.g., microservice-based serverless computing targeting
sub-millisecond latency goals [9], [10], event-driven
serverless edge computing [11], [12]).

• Second, to remediate the above performance issue,
OPA/Gatekeeper can optionally leverage state replication
to speed up the verification instead of fetching the actual
system state in real-time from the orchestrator. However,
this may cause inconsistency between the replicated state
and the actual one (e.g., vulnerability CVE-2021-43979 [13]
which we have discovered), leading to a potential policy
bypass, as shown in our motivating example below.

• Third, while proactive security policy enforcement can
help reducing the response time of OPA/Gatekeeper
without introducing security issues [8], the success of such
a solution depends on the correct identification of which
policies to proactivize first to achieve better efficiency. Such
identification of policies typically relies on manual efforts in
practice, as there do not exist suitable tools for this purpose.

We further depict these limitations in the following example.

Motivating Example. Fig. 1 illustrates an example of a
policy bypass attack caused by the delay in state replication
by OPA/Gatekeeper. The security policy in this example
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mitigates an existing vulnerability in Kubernetes (CVE-2020-
8554 [5]) allowing an attacker to intercept traffic directed to a
victim resource by re-using its IP address. As shown in Fig. 1,
a user sends a Create Pod request 1 via the Kubernetes Ap-
plication Programming Interface (API), which is intercepted
by a Kubernetes admission webhook and forwarded to the
admission controller (i.e., OPA/Gatekeeper) for verification
2 . The latter verifies it against the security policy and allows

it 3 . In 4 , the Pod is created in the cluster with the IP address
192.168.1.1. While OPA/Gatekeeper is replicating the
new cluster state, a malicious user simultaneously makes a
Create Service request with the same IP address for the
externalIP 5 . Since this request arrives after α time which is
less than the data replication delay (i.e., β), the replicated state
has not been updated yet with the IP of the freshly created Pod,
therefore no policy breach is detected 6 . Even though the
policy is configured to be enforced, OPA/Gatekeeper allows
the Service creation with an externalIP equal to the existing IP
of the victim Pod 7 as the replicated state is inconsistent with
the actual state, leading to policy bypass. Thus, the attacker
succeeds to intercept the traffic related to this IP 8 .

Fig. 1. Policy bypass due to data replication delay

Table 1 shows the response time (in ms) of OPA/Gatekeeper
to verify a list of real-world policies [14], [15], [16] ranked
(Column 1) in descending order for a cluster with 100
resources (medium sized cluster). It also shows the percentage
of total response time (Column 2), the cumulative percentage
of total response time to verify all prior policies (Column 3),
as well as the cumulative percentage of policies verified up
to this one (Column 4). Note that measurements take into
account potential parallel execution of policies when possible
(i.e., by relying on the OPA/Gatekeeper policy engine, with
the --max-serving-threads=4 option). As shown by
the bold values, focusing proactivization efforts on only the
first seven policies (ranked from #1 to #7), which represents
only 22.5% of the policies to be verified, can eventually
reduce around 80.1% of the total verification time. In contrast,
focusing on the remaining policies (i.e., policies ranked from
#8 to #31) would help reducing only 19.9% from the total
verification time, while requiring more effort, as 77.5% of the
policies needs to be proactivized in this case. This shows that
the proactivization of the first seven policies is much more
cost-effective as they require less effort and are much more
expensive from the response time point of view.

The above observations demonstrate the potential for
developing a performance profiling-based proactive solution
to improve the overall performance of policy enforcement
without introducing security issues (related to state
replication). However, this comes with challenges to assess

TABLE 1
Distribution of response time for various OPA policies

Rank Response
Time (ms)

% of Total Re-
sponse Time

Cumulative %
of Total Response Time

Cumulative
% of policies

#1 112.36 34.2 34.2 3.2
#2 26.80 8.2 42.4 6.4
#3 26.25 8.0 50.4 9.6
#4 26.00 7.9 58.3 12.9
#5 24.24 7.4 65.7 16.1
#6 23.95 7.3 73.0 19.3
#7 23.46 7.1 80.1 22.5
#8 19.54 5.9 86.0 25.7
... ... ... ... ...

#30 0.88 0.3 99.8 96.8
#31 0.71 0.2 100 100

the performance of security policies in OPA/Gatekeeper and
prioritize the right ones as follows:

• Although policy performance profiling is possible in OPA
(as detailed in Section 2.1), it is not accessible to Kubernetes
users. To do so, one must manually perform the profiling
from inside the container, or use OPA outside of Kubernetes
(knowing that performance results can widely differ
between inside and outside a container).

• To the best of our knowledge, no option is available to
evaluate multiple policies at once: instead, policies can be
profiled only one at a time.

• In addition to the performance profile, the usage frequency
of each policy also needs to be taken into account. However,
OPA does not expose metrics regarding single policy usage.

• Finally, there is no existing solution to automatically
compare policies performance. Instead, one must manually
go through multiple policy evaluation reports (facing the
above challenges) and rank them to determine which ones
can be improved using proactivization.

In this paper, we address those challenges with a perfor-
mance profiling-based proactive approach, namely, PerfSPEC.
The key idea behind this work is that computationally
intensive verification steps can be performed in advance (i.e.,
before the actual events occur), leaving solely the lightweight
enforcement steps at runtime and ensuring a better response
time. To do so, we first evaluate the performance profile of
existing security policies and rank them according to the over-
head they induce. We then learn from historical data (i.e., logs
of past events) and build predictive models to foretell future
critical events involved in those policies incurring the highest
overhead. We then apply those predictions to proactively
start verifying such critical events against currently enforced
security policies, starting with the ones that are highly ranked.
Eventually, once the critical event occurs, PerfSPEC enforces
the results of security policies based on the pre-computed
verification to significantly reduce the delay incurred by
policy verification in large container environments.

Our main contributions are as follows:

• To the best of our knowledge, this is the first work offering a
fully automated framework for proactive security policy en-
forcement in container environments. PerfSPEC ensures that
security policies are enforced with a practical response time,
even for large container environments (e.g., less than 10 ms
for 800 Pods in contrast to 600 ms with OPA/Gatekeeper).

• We automate the arduous process of evaluating the overhead
induced by security policies on the cluster performance. We
establish a ranking to proficiently target expensive policies
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with our proactive approach, and continuously update such
ranking with new policies as they are created. Our ranking
can greatly improve the response time of policy enforcement
using the same amount of effort (e.g., improvement by 98%
with ranking in large clusters versus less than 49% without).

• We build the first predictive models for container events by
studying the dependencies between Kubernetes events, then
comparing different learning approaches (namely, Bayesian
Network, n-gram and LSTM). Our models can be used for
other proactive solutions beyond policy enforcement.

• We integrate PerfSPEC with Kubernetes, the most popular
container orchestrator, and discuss its adaptation to other
environments (e.g., Docker Swarm [17], OpenShift [18]).
Additionally, we discover and publish a vulnerability in
OPA/Gatekeeper (CVE-2021-43979 [13]).

2 BACKGROUND AND MODELS

This section provides backgrounds and our threat model.

2.1 Background

Containerization. As demonstrated in [19] and shown in
the left side of Fig. 2, a container is a bundle of applications
and their dependencies running through operating system
(OS)-level virtualization. Unlike VMs, containers do not
require hardware virtualization, thus resulting in much faster
deployments and less resource consumption. The role of the
container orchestrator (e.g., Kubernetes [3]) is to indirectly
manage containers (i.e., via a container runtime environment
such as Docker [20] or Containerd [21]) through their entire
life cycle (scheduling, deployment, and deletion). More
detailed background on Kubernetes is in Section 5.2.

Fig. 2. Architecture of a Kubernetes environment using
OPA/Gatekeeper [19]

Security Policy Compliance. As shown on the right side of
Fig. 2, OPA/Gatekeeper is a policy enforcement solution for
Kubernetes. At its core, OPA (Open Policy Agent) is a compli-
ance verification engine running inside a container. In the case
of Gatekeeper, OPA is deployed in a container alongside the
necessary interface to make it queryable from the Kubernetes
API through a webhook. Additionally, security policies can be
deployed directly in the Kubernetes cluster using two Custom
Resource Definitions (CRD): a Template and a Constraint.
Gatekeeper periodically queries the Kubernetes cluster to
discover if any new Templates and Constraints are deployed.

Security Policy Performance. OPA offers a way to evaluate
and detail the performance metrics of a policy at runtime.
To do so, the user can call the opa eval or the opa bench
commands. opa eval performs profiling, i.e., it measures the
time needed to load and compile the policy, and evaluate the

query. opa bench conducts benchmarking, i.e., presenting
the same metrics but also extensively running the evaluation
a great number of times to provide statistical data. Although
both commands generate a profile report about the time taken
by a policy, these features by themselves are not enough for
our purpose, as mentioned in Section 1.

2.2 Threat Model

In-scope Threats. In-scope threats include both external and
insider attacks, indifferently. We assume such attacks are made
possible due to implementation flaws, misconfigurations, or
vulnerabilities in the container environment. We limit our
scope to attacks resulting from sequences of operations made
to the Kubernetes API. Like most existing works on security
verification (e.g., [22], [23]), we assume that the integrity of
PerfSPEC and the Kubernetes environment (with its API
requests and events logs) are protected with existing trusted
computing techniques such as remote attestation [24], [25].

Out-of-scope Threats. As PerfSPEC focuses on the Kubernetes
policy compliance, other related issues such as container run-
time security and attack detection are out of its scope. We ex-
clude attacks that can completely bypass the Kubernetes API,
and attacks that do not involve any Kubernetes API requests.
Similar to most works on security verification (e.g., [22], [23]),
we do not consider attackers who can tamper with Kubernetes
or the PerfSPEC solution itself. Like many other verification
works [26], [27], [28], PerfSPEC relies on security experts to
correctly define security policies for the security of the system.

3 PERFSPEC APPROACH

This section presents the PerfSPEC approach.

3.1 Overview

Fig. 3 depicts an overview of our approach and its three
major phases: ranking, learning and runtime. During the ranking
phase, PerfSPEC focuses on evaluating the performance of
policies and ranking them so that proactivization efforts can
be properly prioritized. To do so, it gathers knowledge about
the policies present in the environment, their usage, and their
performance profiles. Eventually, PerfSPEC ranks the policies
according to different metrics and chooses the top group to
proceed in the second phase, considered as priority. During the
learning phase, PerfSPEC captures the dependencies between
events to predict future events. To that end, PerfSPEC pro-
cesses historical data and builds a predictive model that cap-
tures the probabilistic dependency relationships among events
in the container environment. Such predictive model is lever-
aged in the third phase to foretell events. During the runtime
phase, PerfSPEC enforces security policy in a proactive manner.
Specifically, it first conducts proactive verification against
selected security policies (provided by the ranking phase) for
predicted future events by utilizing the predictive models, and
then enforces those proactive verification results when actual
events occur. In the following, we elaborate on each phase.

3.2 The Ranking Phase

This phase (top part of Fig. 3) is to evaluate the policies and
rank them based on performance metrics as follows.
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Fig. 3. Overview of the PerfSPEC approach

Overview. The ranking phase consists of four steps. It takes
different parameters as input and returns a ranking of security
policies based on their evaluations using performance metrics
(as explained next). First, it continuously performs policy
watching, i.e., PerfSPEC monitors the presence of new policies
(or update of existing ones) in the Kubernetes cluster. It stores
information about the policies in the policy registry.
The profiling step performs profiling of resource consumption
and response time of those policies. To do so, it starts by taking
as input a query from historical data (e.g., the first query ran
against a particular policy). It then leverages OPA for profiling
and stores the performance results in the policy registry.
Meanwhile, our solution continuously performs counting to
track the usage frequency of each policy and estimate their
global time and computation consumption (done during
analyzing). These numbers are also continuously updated in
the policy registry. Finally, during the analyzing step,
PerfSPEC queries the policy registry and ranks the
policies by performance (from worst to best) according to
a parameter specified by the admin. It also provides hints
about what specific line of code can be improved (e.g., by
using proactive computation [8]) and what are the critical
events involved in each policy. In the following, we detail
each component of our solution.

Policy Registry. Thepolicy registry is a database storing
policies, the count of their usage, and their performance pro-
files. Its single Policy table contains seven different columns:

• Policy name is a key value identifying the name of the policy.
Even though Rego files can contain multiple policies per
file, we consider each policy independently. In the context
of Kubernetes and OPA/Gatekeeper, we consider that one
Constraint represents one independent policy (i.e., multiple
Constraints associated with the same Template will be
stored as multiple policies).

• Count tracks the number of times a Policy was used.
• First observed contains the timestamp at which the policy

was added to the database. This value is necessary in order
to compute the usage frequency of policies. The age of the
policy is computed while analyzing the policies to rank them.

• Response time is a value reported by the profiling step.
• Computation resource is a value storing the average

percentage of resources (CPU and memory) used over the
total amount available, reported by the profiling step. For
instance, if a policy benchmark reports a CPU consumption

of 14% and a memory consumption of 26%, the average
value of 20% is considered.

• Profile report contains a complete profiling evaluation
report as provided by the profiling step. This report is to be
handed to the end-user alongside the list of policies to help
understand the result.

• Sample data contains a sample of Kubernetes request used to
verify against a policy. This usually corresponds to the Ku-
bernetes request used in the first query observed for a policy.

Policy Watching. During this step, PerfSPEC periodically
(e.g., every few seconds) queries Kubernetes to keep track
of the deployed policies and update the policy registry
accordingly. If a new policy is found, a new entry is added to
the registry (by filling the policy name and first observed fields,
setting the count to 0, and leaving other fields empty). If an ex-
isting policy was updated, its count is reset to 0; its first observed
timestamp is updated and its existing (response time, compu-
tation resource, profile report, sample data) fields are deleted.
This is because updated policies can have very different
performance profiles and use different input data, thus they
should be re-evaluated during the next profiling step.

Profiling. During profiling, PerfSPEC measures performance
profiles for each policy. First, it periodically looks for policies in
the policy registry that have an empty profile report field.
Then, if sample data is available but no profile yet exists (e.g.,
a policy has been recently added/updated), it establishes a
policy profile using the opa eval command (as explained in
Section 2.1). The profiling process is described in Algorithm 1.
The query’s response time, the computation resource as well as
the profile report are averaged over n runs (e.g., n=100) and
saved in the policy registry.

Algorithm 1 Profiling process of PerfSPEC ranking phase
1: Input: PolicyName, SampleInputData
2: Output: ResponseTime, ComputationResource, ProfileReport
3: procedure PROFILE(PolicyName, SampleInputData)
4: for Policy in PolicyRegistry do
5: if SampleData is not empty and ProfileReport is empty then
6: Get the corresponding policy file;
7: for i from i=0 to i=n do
8: Run profiling;
9: Save profiling result;

10: Average profiling results;
11: Save ResponseTime, ComputationResource, ProfileReport

to PolicyRegistry;

Counting. While counting, PerfSPEC keeps track of the
usage of existing policies. As soon as a policy is verified in
OPA/Gatekeeper, it increments the count field of that policy
by one. Additionally, it adds the Kubernetes request received
from the query to the sample data field when the policy is
queried for the first time (i.e., the count value was equal to 0).

Analyzing. During the analyzing step, PerfSPEC computes
a ranking of the policies according to their performance. To
do so, it assigns a score to each policy. First, it takes as input
a configuration from the end-user that specifies whether
response time or computational resources (i.e., CPU/memory)
should be taken as the main criteria for ranking the policies.
This configuration consists of a trade-off coefficient α∈ [0,1]
expressing the amount of response time to be weighed into the
ranking, while its complement (1−α) represents the amount
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of computational resource to be weighed into the ranking. To
compute the score of a policy, we use a formula expressing
the product of its performance and its usage frequency:
Score=(α∗RT+(1−α)∗CR) Count

(CurrentT ime−FirstObserved)
where RT is the response time and CR is the computational
resources consumed. Note that we do not simply consider the
number of times a policy is used (i.e., its Count), but instead
the frequency at which policies are used, i.e., the count of
their usage over the amount of time they have been enforced.
PerfSPEC ranks existing policies according to that score.

Moreover, PerfSPEC enriches the ranking by identifying
critical events involved in some policies and providing hints
about ways to make a policy proactive. Specifically, our
solution parses each policy file and extracts the method and
type of resources triggering it (as specified in the match
field of the Constraint CRD [29]) and uses it as the critical
event for the policy for the next steps. Also, it indicates to
the user which part of the policy can be potentially made
proactively (e.g., HTTP calls made to the Kubernetes API,
in the form GET https://kubernetes.default.svc:
6443/api/v1/<resource_type> can often be made in
advance and their results stored in a watchlist, as detailed
in Section 3.4). Finally, PerfSPEC returns to the end-user a
ranking of policies for proactivization (in the next phases).

Example 1. Fig. 4 details an example of the ranking phase
using our approach. In Step 1 , the admin creates a new policy
named Label Existence using Kubernetes CRD Template and
Constraint. During policy watching, PerfSPEC detects this new
policy in Step 2 and adds it to the policy registry in
Step 3 (timestamp 1669329373). In Step 4 , the new policy
entry is initialized with a count of 0. Once the new policy
has been used once, profiling is done using the opa eval
command to measure a performance profile in Step 5 . The
results are stored in the policy registry in Step 6 .

After a while, in Step 7 (timestamp 1669334850),
suppose the admin decides to optimize its security policies
performance and privileges response time over resource
consumption by specifying the trade-off coefficient α= 0.7
and calling the analyzing step. Our solution then calculates the
score of each policy in Step 8 . For instance, the policy named
Ingress Conflicts was used 12 times since its deployment
at timestamp 1627266506. Its average response time is
62.7 ms and its average resource consumption is 26%.
PerfSPEC calculates a score of 0.147 (scaled by a factor of
10,000 for readability). It does the same for the policy Block
CVE-2020-8554 and calculates a score of 38.718. In Step 9 ,
the admin concludes that the policy Block CVE-2020-8554
should preferably be optimized first, as it has a higher score
than Ingress conflicts. Meanwhile, the Label Existence policy
continues to be profiled for future ranking operations.

3.3 The Learning Phase

This phase (middle part of Fig. 3) is to learn a predictive
model that captures the probabilistic dependencies among
management events in the container environment as follows.

Overview. The learning phase consists of two steps, namely,
log collection and processing and predictive model learning, which
will be detailed later. A predictive model can be represented

as a directed graph where nodes indicate Kubernetes events,
directed edges indicate one event happening (directly or
indirectly) after another event, labelled with a probability. Two
types of dependencies between events are represented in our
model: (i) inter-resource dependency among different resources
(e.g., a Pod resource cannot be created in a Namespace unless
that Namespace resource first exists), and (ii) intra-resource
dependency within one resource (e.g., a delete event on a Pod
resource can only be performed after creation of the Pod). Note
that similar management events and their dependencies exist
for other container orchestrators, as discussed in Section 5.2.
We give details about the learning phase in the following.

Log Collection and Processing. In order to build predictive
models, PerfSPEC first collects event logs from the container
environment (e.g., from Kubernetes), then prepares the log
entries, identifies the event types and extracts sequences of
events. Doing so requires to filter out repeated events and
arrange the events in sequences suitable for learning.

Example 2. Fig. 5 shows an example of log collection and pro-
cessing. In (1) and (2), PerfSPEC collects and extracts the events
“Create Pod, Delete Pod, Create Service, Create
Pod, Create Pod, Create Service, Patch Service,
Create Pod, Patch Service”. Then, in (3), it removes a
repetition of Create Pod. Next, sequences are built in (4).

Predictive Model Learning. PerfSPEC learns predictive
models (including their nodes, edges, and labels of edges)
from sequences obtained in the previous step. Currently,
PerfSPEC offers three different ways of learning predictive
models, namely, Bayesian learning [30], n-gram [31] and
Long Short-Term Memory (LSTM) network [32]. The choice
of predictive model learning approach to apply in practice
is left to the end-user. In the following, we detail the model
learning step using each of these approaches and we evaluate
their performance in Section 6.2.

3.3.1 Bayesian Learning

A Bayesian network [30] is a directed acyclic graph (DAG)
representing random variables (nodes) and their conditional
dependencies. Bayesian learning operates on a set of data
and is typically composed of two steps: structure learning and
parameter learning. The former aims at identifying the nodes
of the model and their relationships while the latter computes
their conditional dependency probabilities. The result is a
Bayesian network in which each node corresponds to an
event and a directed edge from one event A to another event
B represents the probability of observing event B following
event A. We can use such model to determine the probability
of one event to happen after another and thus predict events.

Since the structure of the model is easily determined
from the logs, PerfSPEC builds the structure of the Bayesian
network based on the sequences of event, then proceeds to
learn parameters.

• First, PerfSPEC identifies all unique event types from the
sequences as the nodes of the model. Then, it considers
immediate transitions between event-pairs as edges
between those event nodes. For instance, Fig. 6a shows
an excerpt of the output with such nodes and edges for
Kubernetes. The resulting model is a directed graph.

https://kubernetes.default.svc:6443/api/v1/<resource_type>
https://kubernetes.default.svc:6443/api/v1/<resource_type>
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Fig. 4. An example of ranking phase using PerfSPEC

Fig. 5. An example of log collection and processing

• Then, to make Bayesian learning possible, the directed
graph is transformed into a DAG by breaking cycles. To do
so, our solution employs three steps: (i) First, it removes any
incoherent edges, e.g., it ensures that for any given resource,
an event involving the create and deletemethods does
not appear directly after or before another event involving
any other methods, respectively. Loops (i.e., edges from
a node to itself) are also removed. (ii) Then, it focuses on
breaking bi-directional edges to remove cycles. Specifically,
to choose which direction of such edges to delete, we
consider that, e.g., regardless of the resource, create
events should happen before any other event, and delete
event should happen after any other events. (iii) Lastly,
if the remaining graph is still not acyclic, we employ a
Depth-First Search (DFS) algorithm [33] with backtracking
to visit the graph and remove edges involved in cycles.

• Subsequently, to add the non-immediate transitions
(i.e., transitions from one event to another through one
or more intermediate transitions), PerfSPEC utilizes a
Breadth-First Search (BFS) algorithm [33] to determine
each node’s ability to reach other non-adjacent nodes and
includes these transitions as additional edges in the model.
Non-immediate edges are added to the graph only if they do
not introduce cycles. The resulting model remains a DAG.
Fig. 6b shows an example of such model with immediate
and non-immediate transitions.

• Finally, PerfSPEC learns the probability of transition
between events by leveraging existing Bayesian parameter
learning techniques [30] where the conditional probabilities
indicate the likelihood for (immediate or non-immediate)
transitions to happen. Those probabilities are labels on the

corresponding edges in the predictive model. The built
predictive model (as shown in Fig. 6b) will be used during
the runtime phase.

(a) Structure based on
immediate transitions

(b) Final predictive model based on both
immediate and non-immediate transitions

Fig. 6. Excerpt of PerfSPEC predictive models

Example 3. Fig. 7 shows an example of building a predictive
model using Bayesian learning. In (1), the four unique
nodes of the model are created: Create Pod, Delete
Pod, Create Service, and Patch Service. In (2), eight
edges are identified from the immediate transitions. In (3a),
one edge from Delete Pod to Create Pod is considered
incoherent and deleted because a Pod deletion cannot happen
before its creation. In (3b), we break remaining cycles by
removing bi-directional edges, only keeping edges going to
the critical events Create Service and Patch Service.
In (4) using the BFS algorithm, a non-immediate transition
is obtained: Delete Pod to Patch Service (through
Create Service). Finally, in (5), conditional probabilities
are learned using Bayes probabilities.

3.3.2 N -gram

The n-gram [31] is a Natural Language Processing (NLP) tech-
nique to predict the occurrence of a word based on the previous
n−1 words. That is, n-gram models are used to compute the
likelihood of a word xi to immediately follow a sequence of
n−1words xi−1,xi−2,...,xi−(n−1). In spite of its typical usage
in predicting the next word in a sentence, n-gram models can
also be used to predict the next event in a sequence. Therefore,
we explore n-gram as a potential predictive model learner.

We choose to implement both a 2-gram and a 3-gram, i.e.
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Fig. 7. An example of predictive model building using Bayesian learning

the former will use the very latest historical event to predict
the next one, while the latter will use the two latest events
to predict the next one. First, the training dataset is splitted
into chunks of sub-sequences of 1 or 2 events (for 2-gram and
3-gram, respectively) followed by the next event (the ground
truth, or label). The n-gram models then keep the absolute
count of how many times they encountered each event after
different inputs, then compute their relative probability of
occurrence.

Example 4. A 2-gram’s count table is represented in
Table 2, and the relative probabilities as calculated after
the end of training are also given in the right part of the
table. For this example, we consider the training sequence
“Create Pod, Delete Pod, Create Pod, Delete Pod,
Create Service”, from which we first extract four input
samples: “Create Pod, Delete Pod”, “Delete Pod,
Create Pod”, “Create Pod, Delete Pod”, and
“Delete Pod,Create Service”. As a result, the 2-gram rel-
ative probabilities are calculated, i.e., after Create Pod, only
the event Delete Podwas observed (two times). The prob-
ability of transition for the edge (Create Pod, Delete Pod)
is then 1.0. Similarly, after Delete Pod, the events
Create Pod and Create Servicewere observed one time
each, thus their probability of transition would be 0.5 each.

TABLE 2
An example of the count and prediction tables of a 2-gram after training

Input Count Probability of prediction
Create
Pod

Delete
Pod

Create
Service

Create
Pod

Delete
Pod

Create
Service

Create Pod 0 2 0 0 1.0 0
Delete Pod 1 0 1 0.5 0 0.5

Create Service 0 0 0 0 0 0

3.3.3 LSTM

Long Short Term Memory (LSTM) [32] is a deep learning-based
technique that is widely used in various applications (includ-
ing security solutions). In the same way as n-gram, LSTM can
take as input sub-sequences of different sizes. We choose to
experiment with two different window sizes of one and two
events. The data is prepared in the same way as that forn-gram,
i.e., we extract sub-sequences of one (or two) events, while the
next event is being used as ground truth to train the model.

3.4 The Runtime Phase

This phase (bottom part of Fig. 3) is to intercept events, conduct
proactive verification, and enforce security policies at runtime.

Overview. The runtime phase of PerfSPEC takes as input a
configuration from the user (prediction threshold value and
critical events) and data from the previous phases (security
policies and predictive models). It is composed of four steps:
first, during interception, our solution catches an event at run-
time and triggers another step depending on the nature of that
event. If the event is not considered critical, it calls the proactive
verification step to build a watchlist, otherwise it begins policy
enforcement with the content of previously computed watch-
lists. Once finished, our solution returns to the interception step
and wait for another event to happen. PerfSPEC keeps track
of its watchlists and configuration in a database. Algorithm 2
summarizes the runtime phase of PerfSPEC.

Algorithm 2 PerfSPEC runtime phase
1: Input: Intercepted request
2: procedure RUNTIME(Request)
3: Parse the request
4: Extract the relevant fields and type the event accordingly
5: if event is critical then
6: Verify the watchlist and return a decision
7: else
8: Get the probability of critical event from the model
9: if probability > policy prediction threshold then

10: Start pre-computation and build watchlist

Runtime Database. The runtime phase maintains a Runtime
database composed of four tables, PolicySettings,
PolicyThreshold, PolicyWatchlist, and Model.

• The PolicySettings table stores the configuration of
each policy and contains a policy description attribute, the
corresponding action attribute (e.g., deny, warn, and allow),
as well as a boolean attribute for enabling or disabling the
proactive feature for that policy.

• The PolicyThreshold table stores the critical events and
their prediction threshold values defined for each policy,
and contains a policy foreign key referring to the policy
primary key of the PolicySettings table, a critical event
attribute containing an event considered critical for that
policy, and a threshold attribute containing the prediction
threshold value for that critical event.

• The PolicyWatchlist table stores the actual watchlists
content pre-computed by PerfSPEC for each policy, and
contains a policy foreign key referring to the policy primary
key of the PolicySettings table.

• Finally, the Model table stores the excerpt of predictive
model for each policy (built during the learning phase),
and contains a policy foreign key referring to the policy
primary key of the PolicySettings table, pairs
(current event, future event) representing a
possible transition, and the probability of that transition.

Interception. PerfSPEC intercepts requests made by users to
the container orchestrator (e.g., Kubernetes), and provides the
details of events to the following runtime steps. The current
request is initially blocked to determine if it is critical (i.e.,
could potentially breach a security policy). In case the event is
critical, PerfSPEC maintains the blocking until it completes the
policy enforcement step. Otherwise, if the event is not critical,
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then PerfSPEC releases the block to allow Kubernetes to
execute the event. In parallel, PerfSPEC predicts the potential
next event and performs proactive verification.

Proactive Verification. Based on the current event and using
the predictive model, PerfSPEC predicts future events and
performs proactive verification. Precisely, it first queries the
predictive model to identify the highly probable future critical
events (i.e., with a prediction probability higher than the
chosen prediction threshold). Second, for such predicted
events, PerfSPEC collects the existing resource data related to
each security policy from the container environment. Finally,
it prepares the watchlist(s) (e.g., a blacklist of parameters
that may lead to a policy breach) by verifying the collected
data against each policy. As PerfSPEC blocks critical events
until proactive verification is done, it prevents the kind of
inconsistencies demonstrated in Section 1. Our approach
causes significantly less delay to users than an intercept-and-
check solution, as our experiments show in Section 6.

Policy Enforcement. At runtime, PerfSPEC enforces
security policies based on the content of the watchlists built
during proactive verification. In case the intercepted event is
considered critical w.r.t. a security policy, PerfSPEC first checks
the parameters of that event against the watchlists built for
that policy. Then, based on whether the requested parameters
are present in, or absent from the watchlists, PerfSPEC takes
action to either allow or deny the request, according to the
watchlist rule (e.g., whitelist or blacklist). Note that for any
inaccuracy in the watchlist built for an event (e.g., wrong
event prediction, incomplete predictive model, etc.), PerfSPEC
would simply fall back to the intercept-and-check mode, whose
impact will be evaluated through experiments in Section 6.

Example 5. Fig. 8 depicts an example of the runtime phase. We
consider a scenario where a vulnerability (CVE-2020-8554 [5])
can be exploited to intercept the traffic between two resources
(man-in-the-middle attack), similarly to Section 1. To prevent
that vulnerability, a security policy can be specified as: Services
should not be allowed to use an external IP address identical to any
existing IPs. Following the ranking phase, that particular policy
has been previously identified as the most expensive one in
terms of response time and resources, and the probabilistic
predictive model, built during the learning phase, is the same
as shown in Fig. 6b. Critical events (i.e., events that trigger
the verification) are events impacting Services IP addresses,
i.e., Create Service and Patch Service.

At runtime, for the first intercepted event Create Pod
with its IP address, 192.168.1.1, PerfSPEC looks up in
the predictive model and predicts Create Service as the
next event, indeed considered critical. It then adds the IP
address of the newly created Pod (192.168.1.1) to the
policy watchlist (blacklist). For the second intercepted event,
Create Servicewith an externalIP value of 192.168.1.1,
PerfSPEC denies the request as this requested IP is in the watch-
list. Similarly, the third intercepted event will be allowed as the
external IP of the Service, 192.168.0.8, is not present in the
watchlist. The fourth event will be denied as it tries to modify
the externalIP to192.168.1.1, IP that is in the watchlist. Note
that PerfSPEC avoids inconsistencies between the watchlist
and the actual state of the cluster (as shown in Section 1) as
each request is held until the pre-computation step is over.

Fig. 8. PerfSPEC preventing CVE-2020-8554

4 DATASET GENERATION

In this section, we present our dataset of Kubernetes events
and detail the method performed to collect data.

Characteristics. The dataset contains 16,548 entries of 95
unique events. Fig. 9 represents a detailed distribution of
methods and resources of samples. The annotations on the
plot count the number of times a sample appears in the
dataset (note that only samples with a count greater than 20
are annotated). For instance, the most frequently observed
event is update secrets with 2,234 occurrences, but we
can see that Pods are the most created resources, with the
event create pods observed 1,020 times.
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Fig. 9. Detailed distribution of samples in our dataset

Methodology. To generate events, we adopt the 60 most
popular Helm charts available from ArtifactHub [34] that
we deploy and delete at regular intervals to simulate
administrative operations. As these charts are commonly used
by users to deploy applications and services in Kubernetes,
we consider that the sequences of operations performed for
each deployment and deletion are realistic and representative.
We save the events using Kubernetes audit logs as described
in Section 5. We employed this dataset to build predictive
models as described in Section 3 and to obtain the experiment
results in Section 6. Fig. 10 depicts an excerpt of model
generated from this dataset using the Bayesian learning
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approach for the policies Block CVE-2020-8554 and Unique
Ingress, both involving the critical event create_services.
The policies are further detailed in Section 6.

Fig. 10. Excerpt of our predictive model for the policies Block CVE-
2020-8554 and Unique Ingress, both involving the critical event
create_services. Each node represents an event and each directed
edge represents the probability of two events happening one after the other

5 IMPLEMENTATION AND INTEGRATION

This section describes the implementation and integration
details of PerfSPEC.

5.1 PerfSPEC Implementation

Fig. 11 shows the high-level architecture of PerfSPEC through
its three major phases: ranking, learning and runtime. The first
component performs the ranking phase using four modules.
The policy watcher and countermodules continuously
track the creation/update/deletion of security policies and
their usage frequency, respectively. The profiler module
measures the response time of each security policy, and the
analyzermodule ranks all policies from the most expensive
to the least expensive, according to metrics selected by the user.
All four modules access and share data through the policy
registry. The second component implements the learning
phase. To that end, first the log collector continuously
collects historical data from the Kubernetes cluster, then the
log processor prepares the data and extracts Kubernetes
events. Finally, the predictive model learner module
leverages three different learning techniques (namely,
Bayesian Network, n-gram and LSTM), builds the predictive
model and saves it. The third and last component is for the
runtime phase. First, the interceptormodule captures live
events and determines which module to call next. If the event
is not critical, the proactive verifier module predicts
future events, pre-computes verification results, and stores
them in the watchlist database. Otherwise, if the event is
critical, the policy enforcer module enforces a decision
based on the content of the watchlist. We elaborate on
those three phases in the following.

5.1.1 Implementation of the Ranking Phase

This section details the implementation of the ranking phase.

• The policy registry is a portable and lightweight
database using SQLite [35].

• The policy watchermodule is developed in Python and
uses HTTP requests to communicate with the Kubernetes
API and keep track of the existing policies. The First observed

Fig. 11. PerfSPEC architecture

timestamp is expressed as the Linux timestamp (i.e., the
number of seconds spent since January 1st 1970) of the
first deployment of the policy as observed by the policy
watcher.

• The countermodule is an HTTP server implemented with
Flask [36] that receives information about a policy and the
corresponding Kubernetes input request (in JSON format)
every time a policy is verified. To do so, the OPA source
code of the Driver.Query() function [37] (written in Go)
is modified in order to make an HTTP POST query to the
counterwhen necessary.

• The profiler benefits from the proximity of our
solution with OPA/Gatekeeper to run the opa eval
command directly inside the OPA container and obtain
results as precise as possible. Specifically, it runs the
command opa eval --data policy_file --data
SampleInputData --profile --metrics over 100
iterations to average the results. Additionally, it leverages
Linux’s htop tool [38] to estimate CPU and memory
consumption during profiling. Performance profiles are
returned as text files and averaging is done by parsing the
text fields in Python arrays using numpy.

• Finally, the analyzer module performs mathematical
operations with Python and returns the policies’ ranking
and performance profiles. It also parses the policy code
using Python to identify the critical events and potential
lines of code to be proactivized. All database queries are
done using Python and the sqlite3 library.

5.1.2 Implementation of the Learning Phase

The three main modules of this component include log
collector, log processor, and predictive model
learner, as detailed below.

• The log collectormodule is responsible for collecting
event logs from the container environment. To that purpose,
PerfSPEC first enables the Kubernetes audit logs feature
(see Section 5.2).

• The log processor module extracts the events from
the historical data for the predictive model learner. It reads
the audit log file (in JSON format), extracts the fields
objectRef[resource] and method from the logs and
stores them in a CSV file by leveraging Logstash [39], a
popular log processor. Afterwards, using the Python data
analysis toolkit pandas v1.2.4 [40] and our own code, it
processes each entry with event typing that maps the pair
(method, resource) to a string method_resource (event



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING , VOL. X, NO. X, MONTH YYYY 10

type). Extracted events are written to a file.
• Finally, the predictive model learner module

implements three different learning approaches, namely
Bayesian network, n-gram and LSTM. The specifics of
these implementations and their data preparation steps are
detailed below.

Bayesian Network. To enable learning using Bayesian
network, PerfSPEC first learns the structure of such model. To
do so, a sliding window of size two is applied on the extracted
events, to create sub-sequences composed of two consecutive
elements. All using Python, sub-sequences occurrences are
counted and only the most frequent sub-sequences are kept
to build the structure, as Bayesian learning requires a limited
amount of nodes to perform in a reasonable time. We then
leverage the BayesianModel and MaximumLikelihood
classes of the Python library for learning and inference
in Bayesian networks, pgmpy v0.1.14 [41], to learn the
probabilities. The obtained model is saved in a database.

N -gram. The n-gram model is implemented in Python using
a dictionary data structure. The keys of the dictionary are
the input sub-sequences represented as a single event in the
case of 2-gram and as a 2-tuple in the case of 3-gram. The
values of that dictionary are also dictionaries representing
the probability of each event to happen (keys are predicted
events and values are probabilities). Events in the dataset
are first tokenized (i.e., we map an integer value with each
unique event) using the nltk (Natural Language ToolKit)
Python library [42]. The count and probability calculations
of transitions are done using Python numpy.

LSTM. The LSTM models are implemented in Python using
the Keras framework [43]. The architecture of our model
consists of three layers sequentially organized: (i) an LSTM
layer of depth 256, with a recurrent dropout rate of 0.2; (ii) a
second LSTM layer of depth 128, with a recurrent dropout
of 0.2; and (iii) a dense layer with a softmax activation.

We choose an architecture with relatively small depth (two
LSTM units) as we are dealing with short sequences of events
(two or three depending on the chosen window size). Also,
as the vocabulary is composed of only 95 unique events, we
choose a relatively small width of LSTM (256 for the first cell
and 128 for the second). We use Dropout directly in the LSTM
cell with a rate of 20%. Dropout layers randomly assign a
percentage of input values to 0 in order to prevent the model
from overfitting. The last layer is a dense layer, i.e., a fully
connected layer, used with a softmax activation function as
we are considering multiple potential events for prediction.
Finally, as the output of the LSTM model returns a probability
of appearance for each event in the vocabulary, we choose the
one with highest probability as the predicted event using the
argmax function. We train the model using a batch size of 256
samples over 30 epochs. The associated loss function is the
categorical cross-entropy. We use the Adam optimizer with
Keras’s default parameters during our training.

5.1.3 Implementation of the Runtime Phase

The three main modules of this component areinterceptor,
proactive verifier andpolicy enforcer, as detailed
below.

• The interceptor module aims at intercepting runtime
event requests made to Kubernetes. To that end, PerfSPEC
leverages the Kubernetes admission controller mechanism
to intercept the requests received by the Kube-API server.
The choice to use an admission controller ensures the porta-
bility of our solution and its independence from a specific
orchestrator, since equivalent mechanisms are implemented
in other orchestrators (as discussed in Section 5.2). The
interceptor module runs as a local web server using
the micro web framework Flask [36], and is registered as an
admission controller in Kubernetes. The so-built webhook
receives requests from the Kubernetes API server and
processes them to determine if it is critical or not. If the event
is not critical, the event is released and the proactive
verifier module is queried. Otherwise, the event is put
on hold and the policy enforcermodule is called.

• The proactive verifier module is to incrementally
build the watchlist for a security policy. Particularly, it
considers the intercepted non-critical event, predicts the
most probable next event and checks if that predicted event
is critical for some policies. To do so, it queries the Runtime
database for policies that consider the next predicted event
critical as follows:
SELECT Policy FROM PolicyThreshold
INNER JOIN Model ON Model.FutureEvent
= PolicyThreshold.CriticalEvent WHERE
((Model.CurrentEvent = CurrentEvent) AND (Model.
Probability >= PolicyThreshold.Threshold)).
For policies returned by this query, the proactive
verifier module starts to collect data to build (or
update, if it already exists) the content of watchlists.
Specifically, it collects the required data defined with
the policies using HTTP(S) requests to the cluster. As an
example, for the policy Block CVE-2020-8554 mentionned
in Section 3.4, it gets the IP addresses of existing Pods by
querying the API server with the following URI: https:
//kubernetes.default.svc:6443/api/v1/pods
(as per the Kubernetes API reference [3]). Data collected
that way (in JSON formatting) is then processed and fields
required by the watchlists (e.g., IP addresses of existing
Pods) are extracted. Finally, the proactive verifier
module writes the collected features to the PolicyWatchlist
table in the row corresponding to the policy.

• The policy enforcer module takes care of watchlist
verification and decision enforcement and integrates OPA/-
Gatekeeper [6] as later detailed in Section 5.2. Note that it
is always possible to instead implement PerfSPEC policy
enforcermodule independently from OPA/Gatekeeper
(i.e., as a standalone Kubernetes admission controller
verifying the watchlists and directly returning decision
to Kubernetes). However, there are several advantages
in integrating PerfSPEC with OPA/Gatekeeper, such as
preserving the features offered by the latter while bringing
in the performance of proactive solution to existing policies.

5.2 Integration of PerfSPEC with Kubernetes

This section details the integration of PerfSPEC.

Kubernetes Background. We provide a necessary background
on Kubernetes as follows:

https://kubernetes.default.svc:6443/api/v1/pods
https://kubernetes.default.svc:6443/api/v1/pods
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• Kubernetes Basics. Kubernetes [3] is a container orchestrator
that runs, manages, and coordinates the deployments
of containerized applications. A Kubernetes cluster is
composed of a master Node responsible for controlling and
managing a set of worker Nodes, each hosting multiple Pods
running the applications. The Kube-API server is used to
perform any operation on the cluster that queries or modifies
the state of Kubernetes resources (e.g., Pods, Services,
etc.). In the following, we describe the admission control
mechanism and the logging mechanism in Kubernetes,
which will later be utilized in the integration of PerfSPEC.

• Admission Control. An admission controller in Kubernetes
intercepts the requests made to the Kube-API server
and performs validation, mutation, or both in order to
protect clusters against malicious activities. Particularly,
OPA/Gatekeeper [6] is a cloud-native project that leverages
an admission controller (namely, Gatekeeper) and the Open
Policy Agent (OPA) (a general-purpose policy engine that
decouples decision-making from policy enforcement) to
validate user requests made to the Kube-API server with
respect to policies specified by the admin. When a request
is made to the Kube-API server, Gatekeeper internally uses
OPA to verify the intercepted request against the policies.
Based on the response from OPA, Gatekeeper enforces the
decision (i.e., allow, deny, or mutate the request).

• Logging. Events in Kubernetes can be collected in audit logs
containing detailed events and attributes (e.g., resource-
name, resource-type, method, etc.). A Kubernetes event can
be described as a method (such as create, delete, update,
get, etc.), a resource (such as a user account, a Deployment,
a Pod, a Service, etc.), as well as more or less details
depending on the audit policy. The API documentation [3]
details resources and their associated methods. By knowing
the method and the resource used in a request made to the
Kubernetes API, one can deduct the corresponding event.

Integration with Kubernetes. Fig. 12 illustrates the
integration of PerfSPEC with Kubernetes. Particularly,
Fig. 12a provides a high-level overview of the integration
including the deployment of a Kubernetes testbed, and
Fig. 12b highlights the key integration aspects including how
particularly PerfSPEC interacts with the Kube-API server and
OPA/Gatekeeper. We provide details in the following.

• First, Fig. 12a shows the deployment of our Kubernetes
testbed with PerfSPEC. The physical hardware of our cloud
infrastructure is composed of one physical rack-mount
server with 2x Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz
and 128GB of DDR4-2933 running Debian 10. The container
environment is deployed over 11 VMs (managed by
VirtualBox 7.0) where one VM (eight vCPUs and 32GB
RAM) is hosting the Kubernetes master Node, and ten
other VMs (four vCPUs and 8GB RAM each) are used as
worker Nodes. Each VM is running Ubuntu 20.04 and we
use Python 3.9 for all programming tasks. Additionally,
we use Kubernetes v1.23.14 through the kubectlCLI and
the kubeadm tool for creating the cluster. The container
runtime used is Containerd [21] v1.6.12, as the usage of
Docker is deprecated in recent Kubernetes versions.

• Second, Fig. 12b shows the interaction between PerfSPEC,
OPA/Gatekeeper and Kubernetes. PerfSPEC interacts with

the Kube-API server, first to watch for policies during the
ranking phase, then to intercept current runtime events and
collects data needed for verification during the runtime
phase. Our solution also interacts directly with OPA/-
Gatekeeper to evaluate the performance of policies and
their usage frequency during the ranking phase. During the
runtime phase, PerfSPEC creates constraint parameters for
OPA/Gatekeeper’s policies based on the watchlist contents.
The proper enforcement (deny or allow decision) is per-
formed through PerfSPEC by providing OPA/Gatekeeper
with a policy constraint including the watchlist content.

• This choice of integration presents several advantages:
(i) Different policies can be quickly leveraged/removed
by applying/deleting the corresponding OPA/Gatekeeper
constraints. (ii) Widely-used OPA/Gatekeeper’s features
are preserved while bringing PerfSPEC’s proactive
advantages. (iii) PerfSPEC remains as much decoupled as
possible from Kubernetes.

(a) High-level overview (b) Detailed view

Fig. 12. Integration of PerfSPEC with Kubernetes
Although our implementation is based on Kubernetes,

PerfSPEC can be adapted to other container orchestrators (e.g.,
Docker Swarm [17], OpenShift [18]). The container-related
concepts on which PerfSPEC relies on are not specific to
Kubernetes, and are also implemented in Docker Swarm
and OpenShift. Table 3 gives examples of similitude between
different container orchestrator concepts. Even though the
concept of admission control is partially absent from Docker
Swarm, it is still possible to enable fine-grain control by
leveraging a third-party solution such as OPA [44]. The usage
of API calls in all these orchestrators greatly facilitates the
access to in-cluster resources. Therefore, the adaption to those
orchestrators is practically feasible.

TABLE 3
An excerpt of equivalent terminologies and concepts among three main

container orchestrators
Kubernetes [3] Docker Swarm [17] OpenShift [18]

Cluster Swarm Cluster
Pod Task Pod

Event (Docker) Event (OpenShift) Event
Namespace Stack Project

Admission Control Third-party Plug-in Admission Plug-in

5.3 Challenges in Implementation and Integration

Enabling Kubernetes Audit Logs for Model Learning. As
Kubernetes audit logs (that are used for our model learning)
are disabled by default, enabling that feature requires some
efforts as follows. First, the audit log option has to be enabled
by setting --audit-log-path to a directory with sufficient
write permissions. Second, as audit logs are verbose by
default, the resources (e.g., Pods) and methods (e.g., Create,
Update) to be logged have to be limited by specifying an audit
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policy file. Also, this change requires to restart the cluster.

Kubernetes API Reachability. OPA/Gatekeeper and
PerfSPEC require access to the Kubernetes API for different
reasons (such as, obtaining list of enforced policies, performing
proactive verification, accessing existing Kubernetes
resources). Since OPA/Gatekeeper runs inside a container
and PerfSPEC is external to the cluster, none of them can
directly reach the Kubernetes API. To overcome this issue, we
add a kube-proxy sidecar container to the OPA/Gatekeeper
deployment, and we use kube-proxy in the master node to
give PerfSPEC an access to the Kubernetes API.

OPA Profiling Tool Reachability. The PerfSPEC ranking
phase requires access to the OPA/Gatekeeper container to
accurately profile the policy performance. Because PerfSPEC
is external to Kubernetes, and OPA/Gatekeeper runs in a
container, we use the Kube-API CLI (kubectl exec -it)
to execute the profiling commands in the container.

PerfSPEC Reachability. The PerfSPEC ranking phase needs to
receive input from OPA/Gatekeeper. To that end, we modify
and recompile the OPA/Gatekeeper code to query PerfSPEC
with such information every time a policy is used. Specifically,
upon enforcement of a policy, OPA/Gatekeeper makes an
HTTP POST request to our solution endpoint, implemented
using a Flask web server and exposed in the Kubernetes
cluster using a ClusterIP as endpoint.

Intercepting Events at Runtime. As PerfSPEC aims at
reducing the policy verification and enforcement time, we
find a solution to minimize the delay between the time when
user requests reach the Kubernetes API and the time when
those requests can be intercepted. To that end, we register
PerfSPEC as a Kubernetes admission controller such that it
can intercept the requests as early as OPA/Gatekeeper.

Feeding Watchlist Contents to OPA/Gatekeeper. We use
OPA/Gatekeeper for watchlist verification and policy enforce-
ment (as discussed in Section 5.2). However, OPA/Gatekeeper
does not offer the possibility to simply pass policy parameters
(e.g., watchlist content) as inputs. To overcome that issue,
we develop a method for encoding the PerfSPEC watchlists
content in the YAML format of a standard Constraint file of
OPA/Gatekeeper. We can then feed such encoded watchlists
to OPA/Gatekeeper as specified by the Constraint CRD (e.g.,
command kubectl apply -f constraint.yaml).

Measuring Response Time. Even though our experiments
require to measure the response time at the OPA/Gatekeeper-
level, being run on a container, it is impractical to access
the process and attach a debugger from outside the cluster.
To overcome, we enable a metrics logging feature in the
OPA/Gatekeeper source code that reports response time.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate our solution through experiments.

6.1 Ranking Phase Evaluation

In the following, we evaluate the ranking phase of PerfSPEC.
To conduct our analysis, we leverage a collection of 31
OPA/Gatekeeper security policies obtained from two major

policy libraries. Of these, 26 policies have been sourced from
the OPA/Gatekeeper official policy library [14], four policies
come from the Red Hat Communities of Practice public
repository [15], and one has been contributed by us to address
CVE 2020-8554, as outlined in Section 1. We categorize those
policies into five distinct profiles, namely: Network, Image
Security, Resource Usage, Access Control and Storage.

Evaluation of the Dataset of Policies. In this experiment, we
evaluate the response time of policies enforced by OPA/Gate-
keeper (i.e., without our proactive approach) in our collection.
Fig. 13 depicts the results of ranking the policies according
to their response time using the PerfSPEC ranking phase. We
group the result for the five profiles (i.e., all policies) under
the General profile (Fig. 13 top left corner). Results show that
the distribution of response time loosely follows a power law.
More precisely, we observe that in most profiles (including the
General profile), around 20% of the policies are responsible for
approximately 80% of the total response time of the profile.
Only the Image Security and the Storage profiles do not seem
to follow that power law. For the Storage profile, the interpre-
tation of results is difficult as only two policies are evaluated.
Also, for the Image Security profile, it can be observed that the
average response time of its policies are much lower than for
other profiles in any case (approximately 1.5 ms against more
than 10 ms for other profiles). We can conclude that, in the
general case, making only a minority of top policies proactive
would lead in major savings in total response time, therefore
showcasing the importance of using PerfSPEC ranking phase.

Impact of PerfSPEC’s Ranking on Policy Response Time. In
this experiment, the quantitative impact of the ranking phase
of PerfSPEC on the overall response time is evaluated. Fig. 14
illustrates the gain in response time as a function of the number
of policies proactivized for the Network profile. We evaluate
the policies response time for three different sizes of cluster:
small (10 resources), medium (100 resources) and large (1,000
resources). We compare the optimal ranking achieved by Perf-
SPEC with both a random ranking (averaged over 100 runs)
and a manual ranking performed by five graduate students
familiar with Kubernetes, but not familiar with individual
policies. According to the observations, by utilizing the policy
ranking mechanism provided by PerfSPEC, it is possible to
achieve an optimal average response time by proactively
addressing merely four policies, while it takes students six
policies to achieve the same gain. Conversely, proactivizing
policies in a random manner leads to a much lower rewards, on
average, for the same level of effort. When four or less policies
are proactivized, using the manual ranking offers barely the
same gain in response time as ranking the policies randomly,
showcasing how difficult it is to do a meaningful manual rank-
ing solely based on prior knowledge such as policy description
and code, without automatic profiling and ranking tool. When
the size of the cluster is substantial, the positive influence of our
ranking in reducing the effort needed to reach lower average
response time is more significant. For instance, in clusters of
large size, proactivizing only four policies reduces the overall
response time from 99 ms to less than 2 ms using our ranking,
but reduces it to only 66 ms with a random ranking, and 51 ms
with a manual ranking. This represents an improvement of 98%
using our ranking versus less than 34% and 49%, respectively.
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Fig. 13. Overall evaluation of the dataset of policies used for the ranking experiments
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6.2 Learning Phase Evaluation

In this section, we evaluate the learning phase of PerfSPEC.

Offline Learning Time. We measure the offline learning time,
i.e., the time required for deriving a predictive model from
historical data. Specifically, we measure the time to extract
the event sequences from the processed logs and to learn
the predictive model using the Bayesian network library
pgmpy [41]. The log processing task, done by Logstash, is not
considered as it is performed in parallel of the logs collection.
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Fig. 15. Learning time and accuracy of our predictive model using the
Bayesian learning technique

Fig. 15 shows the time required by the predictive model
builder module of PerfSPEC to build sequences from the logs
and learn a predictive model, while the number of event
sequences varies from 2,000 to 10,000. We can see that the time
required to perform both of those offline learning steps shows
an upward linear trend. The linear trend is less pronounced for
the predictive model learning than for the sequence building,
as the time needed for the former is much less than that is
needed for the latter. For instance, the time required for model

learning increases almost linearly from 248 ms to 337 ms with
the increasing number of sequences, whereas the time required
for sequence building is growing from 801 ms to 3,950 ms.
This has a practical implication since the more expensive
sequence building only needs to be performed once, while
the less expensive model learning may need to be repetitively
performed (e.g., when new event sequences are added to the
training data). Finally, the overall time reaches about 4 seconds
for 10,000 event sequences, which is reasonable especially
considering this is an offline step performed only periodically.

Model Accuracy at Runtime. This series of experiments aims
to evaluate the relationship between the accuracy, prediction
threshold values, and size of the training dataset during the
PerfSPEC runtime phase. The selected prediction threshold for
the critical events determines whether a pre-computation will
be initiated or not. Since the accuracy of our model depends on
the correct prediction of critical events, it is essential to demon-
strate the impact of the prediction threshold value on the over-
all accuracy. Note that the optimal accuracy and corresponding
prediction threshold value may vary across different predic-
tive models. The accuracy is measured for different sizes of
dataset, from 2,000 to 10,000 event sequences. During training,
80% of each dataset is utilized, while the remaining 20% is used
for testing. We define the accuracy as the number of correct
predictions divided by the total number of predictions made.

Furthermore, Fig. 15 shows the accuracy as a function of
prediction threshold values for different sizes of dataset. We
find that the best rate for the utilized model (as depicted in
Fig. 6b) reaches 98.4% for a prediction threshold value of
0.78 and a training dataset of 4,000 sequences. Nevertheless,
slight variations between different training sets are noted,
indicating that a size of training set larger than 2,000 does
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not significantly improve the accuracy. Prediction threshold
values that are above 0.78 results in an accuracy of 0%, as no
pre-computation is ever done. On the other hand, varying
the threshold from 0 to 0.78 results in increasingly better
accuracy values. Higher threshold values eventually mean
that our solution will only perform pre-computations when
the predicted events are highly likely to happen.

Comparison of Learning Techniques. In this experiment,
we compare the three different learning techniques offered
by PerfSPEC and highlight their pros and cons. We focus
our interest on three different metrics, i.e., model accuracy,
time needed for learning (offline learning time), and time
needed for prediction at runtime (runtime inference time). We
consider a prediction threshold value of zero (i.e., we always
perform pre-computation) for these measurements, and the
same accuracy calculation method has been employed for the
three models in order to ensure the consistency of the results.

The results of these experiments are reported in Table 4.
Overall, both LSTMs and n-gram present a better prediction
accuracy than the Bayesian approach. Particularly, the LSTM
models with a window size of one event and two events both
score more than 90% accuracy, with the drawback of larger
learning time (more than 20 seconds compared to 4.3 seconds
for the Bayesian network and less than 70 ms for the n-grams).
Additionally, LSTM models both depict a larger inference
time of around 60 ms while other models typically take less
than one millisecond. On the other hand, the 3-gram approach
(i.e., a window size of two events) proves particularly efficient
both from the accuracy and the timing point of view.

TABLE 4
Comparison of different predictive model learning approaches

Approach Size of
Window Accuracy Offline Learn-

ing Time
Runtime In-

ference Time
Bayesian Network N.A. 79.7% 4.29 s 1e-4 s

LSTM 1 92.3% 24.01 s 0.06 s
2 97.6% 32.75 s 0.07 s

n-grams 1 88.2% 0.01 s 1e-4 s
2 97.3% 0.07 s 2e-4 s

6.3 Runtime Phase Evaluation

In this section, we evaluate the performance of our runtime
phase where we consider the following policies.

• Policy Block CVE-2020-8554 [16] is to block CVE-2020-
8554 [5]. It prevents the creation of Services using the same
externalIP as an already existing resource.

• Policy Deployment with Existing Service [45] ensures that
Kubernetes Deployments are exposed with a corresponding
Service. This can help avoid misconfigurations where a set
of resources is not correctly exposed and ends up being
unreachable by other resources.

• Policy Unique Ingress [46] verifies that Ingress rules are
unique. It helps to mitigate misconfigurations where two
different Ingress rules are applied to the same resources and
potentially resulting in undefined behaviour.

Impact of the Size of the Cluster on Response Time. This set
of experiments measures the response time of PerfSPEC. The
response time is measured as the duration between the time
PerfSPEC receives a critical request and the time PerfSPEC
returns an enforcement decision to Kubernetes. As specified
in Section 5.3, the response time is measured directly at the

decision engine level (i.e., OPA/Gatekeeper) to avoid any over-
head due to external factors. For this experiment, we consider
an environment that is not under stress (i.e., we have enough
time to pre-compute between two requests). Therefore, the pre-
diction threshold for the pre-computation is set to zero (i.e., we
always choose to pre-compute for critical events). A scenario
in a stressed environment is presented later in this section.

Fig. 16 shows the comparison of the response time
between PerfSPEC and OPA/Gatekeeper to enforce three
different policies (taken from the Network profile described in
Section 6.1), namely, Block CVE-2020-8554 [5], Deployment with
Existing Service [45] and Unique Ingress [46]. Particularly, to
enforce the policy Block CVE-2020-8554, PerfSPEC maintains
a near-constant response time of less than 15 ms when we
vary the size of the cluster (# of Pods) for both a single
request of one resource and a batch request of 100 resources.
Conversely, it can be seen that the response time using
OPA/Gatekeeper grows almost linearly in the size of the
cluster. This behaviour can partially be explained by the
reactive nature of OPA/Gatekeeper, i.e. performing the
time-consuming operation of gathering the IP addresses of all
the existing Pods at runtime. For the largest size of cluster (800
Pods here) and for one resource, OPA/Gatekeeper takes up
to 580 ms, whereas PerfSPEC takes only 15 ms (which is close
to 40 times faster). The zoomed inset shows the PerfSPEC
response times on a more precise scale for a single request and
a batch request, measured at 7 ms and 10 ms, respectively.

Similarly, we compare the response time between PerfSPEC
and OPA/Gatekeeper to enforce the Unique Ingress policy
when we vary the size of the cluster (# of Ingress rules, as
dictated by this policy) for both a single resource and a batch
request of 100 resources. Although the response times of
both PerfSPEC and OPA/Gatekeeper grow almost linearly,
PerfSPEC still outperforms OPA/Gatekeeper in all cases (e.g.,
for the largest cluster, 15 ms by PerfSPEC vs. 29 ms by OPA/-
Gatekeeper). Additionally, as discussed in Section 1, the delay
caused by OPA/Gatekeeper (mainly due to its replication step)
leads to inconsistencies between the replicated state and the
actual state of the cluster (which may be exploited for security
policy bypass). Whereas, PerfSPEC not only reduces the delay
by up to 50% but also avoids the need for state replication
and its security implications. Note that the response time for
policy Block CVE-2020-8554 is relatively longer than that for the
Unique Ingress policy, because Pod objects are much more com-
plex and their Kubernetes descriptions contain more details.

Those figures also show the impact of the type of the requests
(either a single request for one resource, or a batch request for
100 resources) on the response time. In the case of policy Block
CVE-2020-8554, the additional delay induced by the batch
request is negligible with respect to the response time. In the
case of the Unique Ingress policy, the additional 4 ms due to
processing the batch request represents an overhead of about
50%. In both cases, we can see that the impact of batch request
on OPA/Gatekeeper and PerfSPEC is similar, and PerfSPEC
outperforms OPA/Gatekeeper for both types of requests.

Impact of Wrong Predictions on Response Time. The second
set of experiments is to measure the impact of wrong predic-
tions by our predictive model on the response time of Perf-
SPEC. For this purpose, we consider the case where a critical
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event occurs without being predicted by PerfSPEC, which has
an impact on the response time as PerfSPEC would fall back to
the intercept-and-check mode in this case (as described in Sec-
tion 3). We measure the overall response time (which includes
both the pre-computation time measured at PerfSPEC level
and the verification time measured at OPA/Gatekeeper level).
For this experiment, we vary the rate of wrong predictions in
the model and use policy Block CVE-2020-8554 for enforcement.
We simulate 10,000 correctly predicted events and vary the rate
of wrong predictions from 5% to 40% (note a rate of wrong pre-
dictions of more than 40% is unlikely in practice) by injecting
unexpected events randomly into the event sequences.

Fig. 17 shows the average overall response time (incurred
in pre-computation as well as in verification by PerfSPEC
for enforcing policy Block CVE-2020-8554) in case of different
(simulated) wrong predictions rates. As a baseline, in Fig. 16
(without simulated errors), the response time is around 12
ms for 800 Pods. In contrast, Fig. 17 shows that, even with a
40% error rate, the response time of PerfSPEC still stays below
125 ms for 800 Pods, which is better than the performance
of OPA/Gatekeeper in the same environment (580 ms, see
Fig. 16). As the error rate is likely much lower in reality (see
Fig. 15), we can conclude that wrong predictions will not
significantly affect the effectiveness of PerfSPEC.
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Impact of Prediction Threshold on Response Time. The
third set of experiments is to measure the impact of different
prediction threshold values (as described in Section 3) on the
response time as well as on the pre-computation efficiency of
PerfSPEC. We realize these experiments in a stressed environ-
ment, i.e., requests arrive one after another without delay. As a
result, since the pre-computing step is blocking, spending time
to pre-compute for one request can impact the response time of
the next request. We vary the value of the critical events predic-
tion threshold from 0.0 to 1.0 and measure the response time
of three policies (namely, Block CVE-2020-8554, Deployment
with Existing Service and Unique Ingress) for a cluster size of
200 resources and single requests. The pre-compute usefulness is
measured as the ratio of the number of pre-computations that
are useful (in the sense that the predicted events eventually
happen) over the total number of pre-computations. The no

pre-compute usefulness is the ratio of the number of times we
make the correct decision to not pre-compute (in the sense that
the event eventually does not happen) over the total number
of times we do not pre-compute. In this experiment, we
deliberately avoid traditional accuracy metrics (e.g., precision,
recall), as use of those metrics might be misinterpreted as
the accuracy of PerfSPEC security; whereas this experiment
instead measures the usefulness of its pre-computation step.
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Fig. 18. Impact of prediction threshold on response time and pre-
computation efficiency for three policies

Fig. 18a, Fig. 18c and Fig. 18b show the response time
of PerfSPEC and the aforementioned usefulness metrics as
functions of the prediction threshold. As an example, Fig. 18a
shows the average response time stays almost constant for
threshold values above 0.23 (0.23 being the highest transition
probability to a critical event existing in the predictive model
for this policy). For values above 0.23, the average response
time is the highest at more than 120 ms, since we never
pre-compute and have to perform the verification at runtime
under such prediction threshold values. For threshold values
below 0.03, the response time peaks at 76 ms, since we always
pre-compute but often unnecessarily (for events that will
not happen). Between values of 0.03 and 0.23, we observe
the lowest response time. Precisely, a threshold value of 0.05
reduces the average response to a minimum of 68 ms. Similar
behaviours can be observed in Fig. 18b and Fig. 18c. Thus,
if necessary, an optimal prediction threshold value can be
determined based on the given policy and training data. Note
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that, in the general case (i.e., the environment is not under
stress and we have enough time to pre-compute between two
requests), the prediction threshold value should be zero.

Impact of the Rate of Critical Events. This fourth set of
experiments investigates further the impact of the rate of
critical events on the efficiency of our solution. Fig. 19 shows
the amount of pre-computation that is missed, the average
additional delay per critical event, and the corresponding
relative overhead, as a function of the rate of critical events
in our environment (per minute). Our solution uses event
prediction to pre-compute policy results for critical events. As
the rate of critical events in the system increases, PerfSPEC is
left with a smaller time window to pre-compute policy results
before the next critical event occurs. As a result, some pre-
computations can eventually be missed as the critical event
happens before the pre-computation step is over. In such cases,
PerfSPEC still enforces the policy by computing the actual
policy results on the fly, resulting in additional delay. Note
that this delay in pre-computation depends on the Kubernetes
admission controller and is not an end-user choice. We vary
the rate of critical events between 5 per minute (measured
during normal cluster operation) and 210 per minute
(extreme cluster usage), for the three policies previously
studied. In each case, the rate of pre-computation misses
follows a logarithmic increase from less than 1% (enough
time to pre-compute) to between 10% and 17% of missed
pre-computations in the extreme case. These incurs relatively
low overhead on the response time with at most 1 ms (12%)
for the Block CVE-2020-8554 and Unique Ingress policies, and
0.3 ms (2.3%) for the Deployment with Existing Service policy.
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Fig. 19. Impact of the rate of critical events per minute on pre-computation
misses (left), average additional delay in time (center) and average
additional delay in percentage (right)

CPU/Memory Consumption. The fifth set of experiment
reports on the resource consumption of our solution at runtime.
Using Linux’s pidstat [47] command, we measure the aver-
age CPU (% of both user and system CPU time) and memory
consumption (virtual set size, in MB) of each of our PerfSPEC’s
runtime modules. Table 5 reports the results measured during
the deployment of the 60 most popular Helm charts used
to collect our dataset (described in Section 4), with all 31
policies enforced (described in Section 6.1). We additionally
report metrics when using OPA/Gatekeeper alone (without
our solution). The CPU and memory consumption of the inter-
ceptor module (registered as an admission webhook) remain
relatively low (4.22% CPU, and 262.5 MB memory) as it does
not actively process data. The proactive verifier can do expensive
data collection and pre-computation (we observed peak CPU
usage at 22.1%), however this does not concern every single
event, making the average resource consumption quite low
as well (4.38% CPU, and 115.2 MB memory). Finally, when

used together with our solution, OPA/Gatekeeper’s CPU
consumption is greatly reduced (from 8.14% to 3.15%) since
results are pre-computed by PerfSPEC, therefore reducing
the processing load on OPA. On the other hand, the memory
consumption rises from 839.6 MB to 1018.4 MB, as results
are stored in memory to be rapidly accessible during policy
verification. Overall, using PerfSPEC over OPA/Gatekeeper
results in an increase in CPU and memory consumption of less
than 4% and 560 MB, respectively. This is acceptable given the
benefits in response time brought by our solution.

TABLE 5
CPU and memory usage of our solution compared to OPA/Gatekeeper

PerfSPEC OPA/Gatekeeper
Modules CPU (%) Memory (MB) CPU (%) Memory (MB)

Interceptor Webhook 4.22 262.5 N/A N/A
Proactive Verifier 4.38 115.2

Runtime Policy Enforcer 3.15 1018.4 8.14 839.6

7 DISCUSSION

This section discusses different aspects of PerfSPEC.

Efforts to Ensure Efficiency. As mentioned in Section 1,
forcing synchronization might be a solution to the current repli-
cation issue in OPA/Gatekeeper. However, the required efforts
to force synchronization at runtime appears to be inefficient
(as depicted in Fig. 16). Alternatively, our solution incurs pre-
computational efforts (which are performed offline) without
causing any significant delay in response at runtime. Further-
more, to minimize the pre-computation effort in PerfSPEC, we
adopt several mechanisms as follows: (i) We use an adjustable
prediction threshold for each policy so that only the relevant
events that are above the threshold are considered as a threat.
Fig. 18 shows that using a threshold of 0 (i.e., considering all
future events as a potential threat) indeed results in higher
response time and lower usefulness, however, there exists an
optimal threshold providing the lowest response time and
highest usefulness. (ii) We use Bayesian network as a fast pre-
diction model and evaluate its efficiency in inference in Table 4.
(iii) Using our ranking phase, we selectively apply our proac-
tive computing solution on policies that have a large impact on
the cluster response time and/or the resource consumption.

Impact on Security. The ranking of the policies does not
have any direct impact on the security of the system and all
policies (regardless of their ranking) will always be enforced.
The ranking helps to schedule the proactive verification of
different policies where more (computationally) expensive
policies are prioritized (as depicted in Fig. 14), so that the
overall response time of our enforcement step can remain
minimum (as shown in Fig. 16). As a result, if a policy is not
proactivized, then we adopt an intercept-and-check approach
to verify that policy at runtime before enforcement (which
only affects the response time of our solution).

8 RELATED WORK

In this section, we review relevant works.

Container Security Verification. Several works (e.g., [48],
[49], [50]) on container security aim at verifying the security
of container images (e.g., [48]) or their integrity (e.g., [49],
[50]). For instance, [48] identifies and assesses vulnerabilities
in Docker containers images, while both [49], [50] propose



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING , VOL. X, NO. X, MONTH YYYY 17

solutions to attest the integrity of containers during their
entire life cycle. Unlike them, PerfSPEC instead aims at
enhancing the performances of security policy verification,
including image security verification but also broader aspects
such as network policy, role-based access control, etc.

Kubernetes Security. There exist solutions addressing differ-
ent security aspects in Kubernetes. Authors in [51] give five
security best practices for Kubernetes as follows: (i) API-based
authentication and authorization request, (ii) network-specific
and Pod-specific policies, restricting network communications
and applying least privilege context to Pods, respectively,
(iii) continuous security patches for the cluster, (iv) logging/-
monitoring the cluster, and (v) continuous security compliance.
PerfSPEC subscribes to the latter by proposing a proactive
and efficient security compliance solution for container en-
vironments. In contrast, most existing works (e.g., [52], [53],
[54]) propose reactive solutions (i.e., after-the-fact), giving
the attacker a larger attack window. For example, Sysdig [52]
provides a system-call level security attack detection approach
while Falco [53] offers an online anomaly detection tool for con-
tainerized applications. KubAnomaly [54] is a learning-based
anomaly detection system, providing runtime monitoring
capabilities in Kubernetes. PerfSPEC differs from those works
as it proactively prevents policy violations.

Security Policy Compliance. There are several proactive
security compliance verification works (e.g., [22], [27], [55],
[56]) for non-container environments (e.g., OpenStack [55]
clouds). For instance, Weatherman [27] and Congress [55] verify
security policies in OpenStack clouds using graph-based
and Datalog-based models, respectively. Moreover in [1], a
proactive protection approach for potential security breaches
in cloud is proposed. Unlike our automated learning of
predictive model, those require the user to provide future
plans, which are not always accessible. LeaPS [22] and
Proactivizer [57] are proactive security solutions for cloud en-
vironments. In contrast to our work, those are not specifically
designed to tackle complexity and challenges of container
environments. Additionally, all those works do not take into
account the ranking of policies to decide the most efficient
way to reduce response time and resource consumption.

A preliminary version of this paper introducing the basic
idea of proactive security policy enforcement in containerized
environments has been published in [8]. In this paper, we
extend our previous work by enhancing the overall usability
and scalability of our proactive security policy enforcement
approach. First, we make it possible for large environments
to adopt our proactive solution by designing a way to
automatically evaluate and rank the performance of policies in
Kubernetes clusters. Second, we improve our predictive model
by refining our previous learning approach and introducing
two more learning techniques. Third, we generate the first
dataset of Kubernetes events generated from realistic deploy
and tear-down operations. Fourth, we design and implement
a new system architecture to integrate those new components
into our framework based on Kubernetes. Finally, we exten-
sively test our solution and its extensions on a collection of
publicly available security policies, and with our new dataset.

In summary, our work mainly differs from the state-of-the-
art works as follows. First, PerfSPEC automatically assesses

the performance of security policies and ranks them to
efficiently reduce the overall response time while keeping
required proactivization effort low. Second, it provides a
proactive security policy enforcement solution designed for
container environments that prevents security compliance
breaches and enhances response time. Third, PerfSPEC au-
tomatically captures dependencies among events in container
environments and learns a predictive model to anticipate fu-
ture critical events. Finally, it is integrated with one of the most
popular policy enforcement frameworks, OPA/Gatekeeper,
while offering the benefit of a proactive solution.

9 CONCLUSION

In this paper, we proposed PerfSPEC, a performance
assessment and proactive security policy enforcement solution
for container environments. We automated the process of
profiling security policy enforcement and determining the
most efficient way to improve their overall response time.
We then leveraged learning techniques to derive a predictive
model that captures dependencies among events in container
environments. PerfSPEC utilized this model to predict future
critical events and efficiently prevent security policy violations
for large container environments with a practical response
time (e.g., less than 15 ms for 800 Pods compared to 600 ms with
one of the most popular existing approaches). Additionally,
we implemented PerfSPEC and integrated it with Kubernetes.

Limitations and Future Work. First, PerfSPEC neither
retrains nor tunes the model based on historical compliance
and changes in user behavior. A future direction is to support
dynamic online learning of the predictive model. Second,
PerfSPEC is integrated with Kubernetes. A future direction
is to integrate it with other container orchestrators. Finally,
our solution is currently automating the process of assessing
policies performance and ranking them, although it still
requires some manual effort to identify critical events and
where to bring proactivization within a policy itself. In the
future, we plan to explore static policy analysis to identify
performance bottlenecks in order to automate these tasks.
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