--- gitea: none include_toc: true --- # PerfSPEC Learning Phase INSTALLATION By follwing thesed steps you can easy run **PerfSPEC notebooks** ## Python > [!CAUTION] > Due to [TensorFlow requiremens](https://www.tensorflow.org/install/pip) **Python 3.12** is the latest compatible For Linux I end up by downloading **Python soruce** and compile For MacOS Use [Homebrew](https://brew.sh/) ``` brew install python@3.12 python3-pip ``` > [!WARNING] > After install Python with **pip** and **virtualenv**
> Install [TensorFlow requiremens](https://www.tensorflow.org/install/pip) ``` pip install tensorflow ``` ### Package manager Use [uv](https://docs.astral.sh/uv/) > An extremely fast Python package and project manager, written in Rust. MacOS and Linux ``` sudo curl -LsSf https://astral.sh/uv/install.sh | sh ``` To add $HOME/.local/bin to your PATH, either restart your shell or run: source $HOME/.local/bin/env (sh, bash, zsh) source $HOME/.local/bin/env.fish (fish) ## Notebook tool Rather than use [Jupyter](https://jupyter.org/) this project use [Marimo](https://marimo.io/) for a lot of good reasons ! #### Marimo ``` python -m venv marimo-env source marimo-env/bin/activate uv pip install marimo ``` Check with `marimo tutorial intro --no-token` A web server should be run at `http://localhost:2718` with a token if not use **--no-token** option for a non secure session [Marimo](https://marimo.io/) configuration is in `$HOME/.config/marimo.toml` ## PerfSPEC Learning Phase #### 1 - `git clone this repository` ``` git clone https://repo.jesusperez.pro/jesus/perfSPEC-learning.git cd perfspec-learning ``` #### 2 - Make structures For **data** use [data_sample.tar.xc](https://repo.jesusperez.pro/jesus/perfspec-learning/src/branch/main/data_sample.tar.xz) ``` tar xvJf data_sample.tar.xz ``` For trained models use [models_sample.tar.xz](https://repo.jesusperez.pro/jesus/perfspec-learning/src/branch/main/models_sample.tar.xz) ``` tar xvJf models_sample.tar.xz ``` Raw log file [raw-audit-logs.log.xz](https://repo.jesusperez.pro/jesus/perfspec-learning/src/branch/main/raw-audit-logs.log.xz) is included in **data** directory #### 3 - Run notebook tool like this Inside `perfspec-learning` path ``` cd learning/python uvx marimo edit --no-token --watch ``` Connect with a browser to **http://localhost:2718** Start with [run_perfspec.py](https://repo.jesusperez.pro/jesus/perfspec-learning/src/branch/main/learning/python/run_perfspec.py) >[!IMPORTANT] > A red box will appear at top left corner prompting to install required packages for the loaded notebook, in console where localhost:2718 appers listening [uv](https://docs.astral.sh/uv/) will do the magic by installing them using **pip** Note each notebook can import some extra packages like [train_perfspec.py](https://repo.jesusperez.pro/jesus/perfspec-learning/src/branch/main/learning/python/train_perfspec.py) In any case some notebook import content from others. > [!Tip] > When all notebooks have being loaded it will be posible also to use them as a Python script by run it in a terminal o console like this: ``` python model_perfspec.py -- --help ``` There is also an static html mode to be used, more info: [script mode](https://docs.marimo.io/guides/scripts/) Some Python packages could be not detected and will require manual installation via command-line, simply for example, use: ``` uv pip install scikit-learn uv pip install prettytable ```