# /// script # requires-python = ">=3.13" # dependencies = [ # "keras==3.8.0", # "marimo", # "numpy==2.2.2", # ] # /// import marimo __generated_with = "0.10.17" app = marimo.App(width="medium") @app.cell(hide_code=True) def title(): import marimo as mo notebook_name = 'train_perfspec.py' from lib_perfspec import perfspec_vars (_,_defs) = perfspec_vars.run() perfspec = _defs['perfspec'] from lib_perfspec import perfspec_header (_,_defs) = perfspec_header.run() lib_header = _defs['header'] lib_intro = _defs['intro'] mo.md( f""" {lib_header(notebook_name)} ## Train **{perfspec['app']['train_mode']}** model """ ) return ( lib_header, lib_intro, mo, notebook_name, perfspec, perfspec_header, perfspec_vars, ) @app.cell(hide_code=True) def imports(): import tensorflow as tf import numpy as np from pathlib import Path import keras return Path, keras, np, tf @app.cell(hide_code=True) def intro_load(Path, lib_intro, mo, notebook_name, perfspec): verbose = perfspec['settings']['verbose'] perfspec['vars'] = {} from lib_perfspec import perfspec_args (_,_defs) = perfspec_args.run() if not Path(perfspec['defaults']['models_dirpath']).exists(): exit(f"Trained models dir path not found: {perfspec['defaults']['models_dirpath']}") if not Path(perfspec['defaults']['checkpoints_dirpath']).exists(): exit(f"Trained checkpoints models dir path not found: {perfspec['defaults']['checkpoints_dirpath']}") if not Path(perfspec['defaults']['data_dirpath']).exists(): exit(f"data dir path not found: {perfspec['defaults']['data_dirpath']}") from lib_perfspec import perfspec_load_actions (_,_defs) = perfspec_load_actions.run() lib_load_actions = _defs['load_actions'] from lib_perfspec import perfspec_input_sequence (_,_defs) = perfspec_input_sequence.run() lib_get_input_sequence = _defs['get_input_sequence'] from lib_perfspec import perfspec_predict _, _defs = perfspec_predict.run() lib_predict_action = _defs['predict_action'] verbose=perfspec['settings'].get('verbose') perfspec['vars']['model'] = None perfspec['vars']['history'] = None (perfspec['vars']['actions'], perfspec['vars']['unique_actions'], perfspec['vars']['label_encoder'], perfspec['vars']['encoded_actions'] ) = lib_load_actions( actions_path=perfspec['settings'].get('actions_filepath'), verbose=verbose ) perfspec['vars']['input_sequence'] = lib_get_input_sequence( input_str=perfspec['settings']['input_str'], unique_actions=perfspec['vars']['unique_actions'] ) mo.md( f""" {lib_intro(notebook_name)} """ ) return ( lib_get_input_sequence, lib_load_actions, lib_predict_action, perfspec_args, perfspec_input_sequence, perfspec_load_actions, perfspec_predict, verbose, ) @app.cell(hide_code=True) def setting(mo, notebook_name, perfspec): from lib_perfspec import perfspec_out_settings (_,_defs) = perfspec_out_settings.run() out_settings = _defs['out_settings'] mo.md( f""" Settings are defined in: [lib_perfspec.py]({mo.notebook_dir()} / lib_perfspec.py) {out_settings(notebook_name)} Total of values from data: **{len(perfspec['vars']['actions'])}** with total of unique values: **{len(perfspec['vars']['unique_actions'])}** >

Train size {perfspec['defaults']['train_size']} to train model: **{ int(perfspec['defaults']['train_size'] * len(perfspec['vars']['actions'])) }** with sequence of **{perfspec['defaults']['sequence_length']}**

Values can be overwritten by using **command-line** (see options below). """ ) return out_settings, perfspec_out_settings @app.cell(hide_code=True) def command_line(mo, notebook_name): from lib_perfspec import perfspec_cli_ops (_,_defs) = perfspec_cli_ops.run() out_cli_ops = _defs['out_cli_ops'] mo.accordion({ "Mostrar command Line options ": out_cli_ops(notebook_name) }) return out_cli_ops, perfspec_cli_ops @app.cell(hide_code=True) def perfspec_define_confusion_matrix( load_model_from_path, mo, np, prepare_train, ): def make_confusion_matrix(perfspec): from tensorflow.keras.utils import to_categorical from tensorflow.keras.preprocessing.sequence import pad_sequences from sklearn.preprocessing import LabelEncoder from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay import matplotlib.pyplot as plt import seaborn as sns if perfspec['vars']['model'] == None: model = load_model_from_path(perfspec['settings']['verbose']) if perfspec['vars'].get('model') != None: print("No model found") return else: model = perfspec['vars']['model'] (perfspec['vars']['X'],perfspec['vars']['y'],perfspec['vars']['_y']) = prepare_train(perfspec) #X = [] #y = [] #sequence_length = perfspec['settings']['sequence_length'] # Generate input-output pairs #for j in range(len(perfspec['vars']['encoded_actions']) - sequence_length): # X.append(perfspec['vars']['encoded_actions'][j:j + sequence_length]) # Input sequence # y.append(perfspec['vars']['encoded_actions'][j + sequence_length]) # Target (next action) #X = np.array(X) #y = np.array(y) ## Ensure _X has the correct shape for LSTM #X = pad_sequences(X, maxlen=perfspec['settings']['sequence_length'], padding='pre') #X = np.expand_dims(X, axis=-1) # Shape: (num_samples, sequence_length, 1) X = perfspec['vars']['X'] y = perfspec['vars']['_y'] encoder = LabelEncoder() y_encoded = encoder.fit_transform(y) #y_encoded = encoder.fit_transform(perfspec['vars']['unique_actions']) #y_encoded = encoded_input # Split the dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.2, random_state=42) # Predict with your model (replace this with actual predictions) y_pred = model.predict(X_test) # This returns the predicted probabilities #y_pred = predicted_probabilities y_pred_classes = np.argmax(y_pred, axis=1) # Get class predictions from probabilities # Plot confusion matrix cm = confusion_matrix(y_test, y_pred_classes) ax = sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels='auto', yticklabels='auto') ax.set_xticklabels(ax.get_xticklabels(), fontsize=7) ax.set_yticklabels(ax.get_yticklabels(), fontsize=7) plt.title("Confusion Matrix") plt.xlabel("Predicted Labels") plt.ylabel("True Labels") plt.show() mo.md( r""" ### Define Confusion Matrix """ ) return (make_confusion_matrix,) @app.cell(hide_code=True) def consfusion_matrix_callback( ConfusionMatrixDisplay, confusion_matrix, keras, mo, np, plt, tf, ): @keras.saving.register_keras_serializable(package="Custom") class ConfusionMatrixCallback(tf.keras.callbacks.Callback): def __init__(self, val_data, label_encoder=None, display=False): """ Custom callback to compute and display a confusion matrix at the end of each epoch. Parameters: - val_data: Tuple (X_val, y_val) for validation data. - label_encoder: Optional, if labels are encoded, to map back to original labels. - display: Whether to display the confusion matrix as a plot. """ super().__init__() self.val_data = val_data self.label_encoder = label_encoder self.display = display def on_epoch_end(self, epoch, logs=None): # Get the validation data val_X, val_y = self.val_data # Predict the classes for validation data y_pred = self.model.predict(val_X, verbose=0) y_pred_classes = np.argmax(y_pred, axis=1) # If label encoding is provided, decode the labels if self.label_encoder: val_y = self.label_encoder.inverse_transform(val_y) y_pred_classes = self.label_encoder.inverse_transform(y_pred_classes) # Compute the confusion matrix cm = confusion_matrix(val_y, y_pred_classes) # Optionally display or save the confusion matrix if self.display: self.plot_confusion_matrix(cm, epoch) # Print the confusion matrix to console print(f"Epoch {epoch + 1}: Confusion Matrix\n{cm}") def plot_confusion_matrix(self, cm, epoch): """ Plot and display the confusion matrix using matplotlib. """ plt.figure(figsize=(8, 8)) disp = ConfusionMatrixDisplay(confusion_matrix=cm) disp.plot(cmap='viridis', values_format='d') plt.title(f'Confusion Matrix - Epoch {epoch + 1}') plt.show() def get_config(self): # Return the configuration of the metric as a dictionary config = super().get_config() return config mo.md( r""" ### Confusion Matrix Callback """ ) return (ConfusionMatrixCallback,) @app.cell(hide_code=True) def precsion_metric(F1Score, keras, mo, tf): @keras.saving.register_keras_serializable(package="Custom") class PrecisionMetric(tf.keras.metrics.Metric): def __init__(self, name="precision", **kwargs): super(PrecisionMetric, self).__init__(name=name, **kwargs) self.true_positives = self.add_weight(name="tp", initializer="zeros") self.false_positives = self.add_weight(name="fp", initializer="zeros") def update_state(self, y_true, y_pred, sample_weight=None): y_pred = tf.argmax(y_pred, axis=1) y_true = tf.cast(y_true, tf.int32) y_pred = tf.cast(y_pred, tf.int32) true_positives = tf.reduce_sum(tf.cast(tf.equal(y_true, y_pred) & tf.equal(y_true, 1), tf.float32)) false_positives = tf.reduce_sum(tf.cast(tf.not_equal(y_true, y_pred) & tf.equal(y_pred, 1), tf.float32)) self.true_positives.assign_add(true_positives) self.false_positives.assign_add(false_positives) def result(self): return self.true_positives / (self.true_positives + self.false_positives + tf.keras.backend.epsilon()) def reset_states(self): self.true_positives.assign(0.0) self.false_positives.assign(0.0) def get_config(self): # Return the configuration of the metric as a dictionary config = super().get_config() return config def get_config(self): base_config = super(F1Score, self).get_config() return base_config @classmethod def from_config(cls, config): return cls(**config) mo.md( r""" ### Precision Metric **Precision** measures how many of the predicted positive labels are actually correct. It is calculated as: \[ \text{Precision} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}} \] - **True Positives (TP)**: Cases where the model predicted `1` (positive) and the actual label is also `1`. - **False Positives (FP)**: Cases where the model predicted `1` (positive), but the actual label is not `1`. - The logical conditions check if predictions match and filter for the positive class (`1`). - These counts are accumulated over batches. """ ) return (PrecisionMetric,) @app.cell(hide_code=True) def recall_metric(keras, mo, tf): @keras.saving.register_keras_serializable(package="Custom") class RecallMetric(tf.keras.metrics.Metric): def __init__(self, name="recall", **kwargs): super(RecallMetric, self).__init__(name=name, **kwargs) self.true_positives = self.add_weight(name="tp", initializer="zeros") self.false_negatives = self.add_weight(name="fn", initializer="zeros") def update_state(self, y_true, y_pred, sample_weight=None): y_pred = tf.argmax(y_pred, axis=1) y_true = tf.cast(y_true, tf.int32) y_pred = tf.cast(y_pred, tf.int32) true_positives = tf.reduce_sum(tf.cast(tf.equal(y_true, y_pred) & tf.equal(y_true, 1), tf.float32)) false_negatives = tf.reduce_sum(tf.cast(tf.not_equal(y_true, y_pred) & tf.equal(y_true, 1), tf.float32)) self.true_positives.assign_add(true_positives) self.false_negatives.assign_add(false_negatives) def result(self): return self.true_positives / (self.true_positives + self.false_negatives + tf.keras.backend.epsilon()) def reset_states(self): self.true_positives.assign(0.0) self.false_negatives.assign(0.0) def get_config(self): # Return the configuration of the metric as a dictionary config = super().get_config() return config @classmethod def from_config(cls, config): return cls(**config) mo.md( r""" ### Define Recall Mectric **Recall** measures how many actual positive labels were correctly predicted. It is calculated as: \[ \text{Recall} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}} \] - **False Negatives (FN)**: Cases where the model predicted `0` (negative), but the actual label is `1`. - This is similar to precision but focuses on capturing all actual positives. """ ) return (RecallMetric,) @app.cell(hide_code=True) def f1_score_metric(PrecisionMetric, RecallMetric, keras, mo, tf): @keras.saving.register_keras_serializable(package="Custom") class F1ScoreMetric(tf.keras.metrics.Metric): def __init__(self, name="f1_score", **kwargs): super(F1ScoreMetric, self).__init__(name=name, **kwargs) self.precision = PrecisionMetric() self.recall = RecallMetric() def update_state(self, y_true, y_pred, sample_weight=None): self.precision.update_state(y_true, y_pred, sample_weight) self.recall.update_state(y_true, y_pred, sample_weight) def result(self): precision = self.precision.result() recall = self.recall.result() return 2 * (precision * recall) / (precision + recall + tf.keras.backend.epsilon()) def reset_states(self): self.precision.reset_states() self.recall.reset_states() def get_config(self): # Return the configuration of the metric as a dictionary config = super().get_config() # config = super(F1Score, self).get_config() return config @classmethod def from_config(cls, config): return cls(**config) mo.md( r""" ### Define F1 Score Metric F1-score balances precision and recall, especially useful when the dataset is imbalanced. It is the harmonic mean of precision and recall: \[ \text{F1-Score} = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} \] - `epsilon` is added to avoid division by zero. """ ) return (F1ScoreMetric,) @app.cell(hide_code=True) def custom_validation_metrics(mo, tf): #Custom callback to compute metrics on validation data class CustomValidationMetrics(tf.keras.callbacks.Callback): def __init__(self, X_val, y_val): super().__init__() # Initialize the parent class self.X_val = X_val self.y_val = y_val def on_epoch_end(self, epoch, logs=None): val_predictions = self.model.predict(self.X_val, verbose=0) val_predictions = (val_predictions > 0.5).astype(int) # Binarize predictions # Compute precision, recall, and f1-score precision = tf.keras.metrics.Precision()(self.y_val, val_predictions) recall = tf.keras.metrics.Recall()(self.y_val, val_predictions) f1_score = 2 * (precision * recall) / (precision + recall + 1e-7) print(f"\nEpoch {epoch + 1} Validation Metrics - Precision: {precision:.4f}, Recall: {recall:.4f}, F1 Score: {f1_score:.4f}") mo.md( r""" ### Custom Validation Metrics To apply metrics only to the validation set in Keras, via custom callback that computes metrics on the validation data at the end of each epoch. Keras does not seems to have a natively support specifying metrics exclusively for validation data in the compile() method """ ) return (CustomValidationMetrics,) @app.cell(hide_code=True) def perfspec_prepare_model_train(mo, np): def prepare_train(perfspec): from tensorflow.keras.utils import to_categorical from tensorflow.keras.preprocessing.sequence import pad_sequences #from sklearn.preprocessing import LabelEncoder # Parameters X = [] y = [] sequence_length = perfspec['settings']['sequence_length'] # Generate input-output pairs for j in range(len(perfspec['vars']['encoded_actions']) - sequence_length): X.append(perfspec['vars']['encoded_actions'][j:j + sequence_length]) # Input sequence y.append(perfspec['vars']['encoded_actions'][j + sequence_length]) # Target (next action) X = np.array(X) y = np.array(y) # Ensure _X has the correct shape for LSTM X = pad_sequences(X, maxlen=sequence_length, padding='pre') X = np.expand_dims(X, axis=-1) # Shape: (num_samples, sequence_length, 1) _y = y vocab_size =len(perfspec['vars']['label_encoder'].classes_) # Total number of unique actions # One-hot encode _y for classification y = to_categorical(y, num_classes=vocab_size) return (X,y,_y) mo.md( r""" ## Prepare train model input Load input and **shape X,y** for model """ ) return (prepare_train,) @app.cell(hide_code=True) def show_train_model_shape(mo, perfspec, prepare_train, verbose): (perfspec['vars']['X'], perfspec['vars']['y'],perfspec['vars']['_y']) = prepare_train(perfspec) if verbose != None or mo.cli_args().get("verbose") != None or mo.running_in_notebook(): print(f"X shape : {perfspec['vars']['X'].shape}") print(f"y shape : {perfspec['vars']['y'].shape}") mo.md( r""" ### Show train model shape """ ) return @app.cell(hide_code=True) def make_model(CustomValidationMetrics, mo, np, perfspec): # Define the LSTM model def make_model(X=[],y=[],label_encoder=[], encoded_actions=[]): if len(X) == 0 or len(y) == 0: print ("make_model: No values fond for X y i") return from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Input, LSTM, Dense, Embedding, Dropout from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import ( EarlyStopping, ReduceLROnPlateau, Callback, ModelCheckpoint, ) vocab_size = len( label_encoder.classes_ ) # Get the number of unique action labels # Model architecture embedding_dim = 50 #input_shape = (perfspec['settings']['input_length'],perfspec['settings']['input_length'],vocab_size), perfspec['vars']['model'] = Sequential( [ #Embedding(input_dim=vocab_size, output_dim=embedding_dim), Input(shape=(perfspec['settings']['sequence_length'], 1)), LSTM( perfspec['settings']['lstm_units_1'], return_sequences=True, recurrent_dropout=perfspec['settings']['dropout_rate'], input_shape=(perfspec['settings']['sequence_length'], 1), ), LSTM( perfspec['settings']['lstm_units_2'], return_sequences=False, recurrent_dropout=perfspec['settings']['dropout_rate'], ), Dropout(0.5), Dense( vocab_size, activation="softmax" ), # Softmax for multi-class classification ] ) # Split the data for training and validation train_size = int(perfspec['defaults']['train_size'] * len(X)) train_X, val_X = X[:train_size], X[train_size:] train_y, val_y = y[:train_size], y[train_size:] if train_y.ndim > 1 and train_y.shape[-1] == vocab_size: loss_function = "categorical_crossentropy" else: # Convert targets to integers if needed train_y = np.argmax(train_y, axis=-1) if train_y.ndim > 1 else train_y val_y = np.argmax(val_y, axis=-1) if val_y.ndim > 1 else val_y loss_function = "sparse_categorical_crossentropy" # Compile the model perfspec['vars']['model'].compile( optimizer=Adam(), loss=loss_function, metrics=[ "accuracy" # PrecisionMetric(), # RecallMetric(), # F1ScoreMetric() ], ) # Create confusion matrix callback #confusion_callback = ConfusionMatrixCallback( # val_data=(val_X, val_y), # label_encoder=label_encoder, # display=True #) # Callbacks early_stopping = EarlyStopping( monitor="val_loss", patience=10, restore_best_weights=True ) lr_reduction = ReduceLROnPlateau( monitor="val_loss", patience=8, factor=0.8, min_lr=0.0001 ) custom_metrics_callback = CustomValidationMetrics(X, y) if perfspec['settings']['checkpoint_mode'] == "weights": # Save only the weights of the model instead of the full model. checkpoint = ModelCheckpoint( filepath=perfspec['settings']['checkpoint_filepath'].as_posix(), save_best_only=True, # True to save only when validation loss improves monitor='val_loss', # Metric to monitor mode='min', # Minimize the validation loss verbose=1 # Print messages when saving ) elif perfspec['settings']['checkpoint_mode'] == "epochs": # Define to collect save checkpoint at the end of every epoch via callback #_checkpoint_filepath = checkpoint_dirpath + '/' + 'model_at_epoch_{epoch:02d}.h5' checkpoint = ModelCheckpoint( filepath=perfspec['settings']['checkpoint_filepath'].as_posix(), save_best_only=False, # True to save only when validation loss improves verbose=1 # Print messages when saving ) callbacks=[early_stopping,lr_reduction] callbacks=[early_stopping,lr_reduction] callbacks.append(custom_metrics_callback) if checkpoint != None: callbacks.append(checkpoint) # Print the model summary perfspec['vars']['model'].summary() print (" train size: {}".format(train_size)) print (" train_X size: {}".format(len(train_X))) print (" train_y size: {}".format(len(train_y))) print (" val_X size: {}".format(len(train_X))) print (" val_y size: {}".format(len(train_y))) # Train the model perfspec['vars']['history'] = perfspec['vars']['model'].fit( train_X, train_y, batch_size=perfspec['settings']['batch_size'], epochs=perfspec['defaults']['epochs'], validation_data=(val_X, val_y), verbose=2, callbacks=callbacks ) return mo.md( r""" ## Make Model train This is where **model** is creates and **fit** Saved in `perfspec['vars']` as `model` and `history` """ ) return (make_model,) @app.cell(hide_code=True) def main(mo): mo.md(r"""""") return @app.cell(hide_code=True) def use_or_make_model( Path, load_model_from_path, make_model, mo, perfspec, verbose, ): if Path(perfspec['settings']['model_filepath']).exists(): if mo.running_in_notebook() or (verbose != None or mo.cli_args().get("verbose") != None): print (f"Trained model path already exist, to train model DELETE existing path: {perfspec['settings']['model_filepath']}") perfspec['vars']['model']=load_model_from_path(perfspec,perfspec['settings']['verbose']) else: if perfspec['vars'].get('X').any() and perfspec['vars'].get('y').any(): make_model( X=perfspec['vars']['X'], y=perfspec['vars']['y'], label_encoder=perfspec['vars']['label_encoder'], encoded_actions=perfspec['vars']['encoded_actions'] ) #evaluate_model(the_model,X,y) mo.md( f""" ### Use or Train Model **IMPORTANT** if model_filepathmodel_filepath not exists it will be created otherwise it will be loaded form model_filepathmodel_filepath Path: "🍃" {perfspec['settings']['model_filepath']} """ ) return @app.cell(hide_code=True) def perfspec_load_model_from_path(Path, mo, perfspec): def load_model_from_path(perfspec,verbose): from keras.models import load_model custom_objects = { # "PrecisionMetric": PrecisionMetric, # "RecallMetric": RecallMetric, # "F1ScoreMetric": F1ScoreMetric, } if Path(perfspec['settings']['model_filepath']).exists(): perfspec['vars']['model'] = load_model( perfspec['settings']['model_filepath'], #custom_objects=custom_objects ) if verbose != None and not mo.running_in_notebook(): print (f"Trained model loaded from: {perfspec['settings']['model_filepath']}") return perfspec['vars']['model'] else: return None mo.md( f""" ### Load model from path Load trained model from file **model_filepath** 🍃 Path: {perfspec['settings']['model_filepath']} """ ) return (load_model_from_path,) @app.cell(hide_code=True) def perfspec_save_model(Path, mo, perfspec): def save_model(): if not Path(perfspec['settings']['model_filepath']).exists() and perfspec['vars']['model'] != None: # Save the model print (f"Save trained model to: {perfspec['settings']['model_filepath']}") perfspec['vars']['model'].save(perfspec['settings']['model_filepath']) if perfspec['vars']['history'] != None: import json try: with open(perfspec['settings']['model_history_filepath'], 'w') as output_file: json.dump(perfspec['vars']['history'].history,output_file) print (f"Save trained model history to: {perfspec['settings']['model_history_filepath']}") except IOError as e: print(f"Error writing to file: {e}") except json.JSONDecodeError as e: print(f"Error encoding JSON: {e}") save_model() mo.md( f""" ## Save Model to `model_filepath` "🍃" {perfspec['settings']['model_filepath']} Path can be changed via **command-line** with **--model** `model-filepath` """ ) return (save_model,) @app.cell(hide_code=True) def perfspec_plot_history(Path, mo): def plot_history(perfspec): import json from keras.src.callbacks import History if 'vars' not in perfspec: return None if perfspec['vars']['history'] != None: if isinstance(perfspec['vars']['history'], History): _model_history = perfspec['vars']['history'].history else: _model_history = perfspec['vars']['history'] else: if not Path(perfspec['settings']['model_history_filepath']).exists(): print(f"Not found: {perfspec['settings']['model_history_filepath']}") _model_history = {} else: with open(perfspec['settings']['model_history_filepath']) as history_file: perfspec['vars']['history'] = json.load(history_file) _model_history = perfspec['vars']['history'] return _model_history mo.md( f""" ## Plot Model history """ ) #if 'plt_accuracy' in perfspec['vars']: mo.as_html(perfspec['vars']['plt_accuracy'].gcf()) return (plot_history,) @app.cell(hide_code=True) def perfspec_plot_defs(mo, model_history, plot_history): def plot_accuracy(perfspec): _model_history = plot_history(perfspec) if _model_history != None and mo.running_in_notebook(): import matplotlib.pyplot as plt import seaborn as sns if _model_history.get('accuracy'): plt.style.use('dark_background') # Plot training & validation accuracy values (_, acc) = plt.subplots() acc.plot(_model_history['accuracy'],color='white') acc.plot(_model_history['val_accuracy'], color='orange') acc.set_title('Model Accuracy') acc.set_xlabel('Epochs') acc.set_ylabel('Accuracy') acc.legend(['Train', 'Test'], loc='upper left') return plt elif perfspec['settings']['verbose'] == 2: if 'accuracy' in _model_history: print ('model val_accuracy') for idx,it in enumerate(_model_history.get('val_accuracy')): print(f"epoch: {idx} value: {it}") return None def plot_loss(perfspec): _model_history = plot_history(perfspec) if _model_history != None and mo.running_in_notebook(): import matplotlib.pyplot as plt import seaborn as sns if _model_history.get('loss'): plt.style.use('dark_background') (_, loss) = plt.subplots() loss.plot(_model_history['loss']) loss.plot(_model_history['val_loss']) loss.set_title('Model Loss') loss.set_label('Epochs') loss.set_ylabel('Loss') loss.legend(['Train', 'Test'], loc='upper left') return plt elif perfspec['settings']['verbose'] == 2: if 'val_loss' in _model_history: print ('model val_loss') for idx,it in enumerate(_model_history.get('val_loss')): print(f"epoch: {idx} value: {it}") return None def plot_precision(perfspec): _model_history = plot_history(perfspec) if _model_history != None and mo.running_in_notebook(): import matplotlib.pyplot as plt import seaborn as sns if _model_history.get('precision'): plt.style.use('dark_background') # Plot training & validation accuracy values plt.plot(model_history['learning_rate']) plt.plot(model_history['precision']) plt.plot(model_history['recall']) plt.plot(model_history['f1_score']) plt.title('Model learning') plt.xlabel('Epochs') plt.ylabel('Learning') plt.legend(['Rate','Precision','Recall', 'f1_score'], loc='upper left') return plt else: return None return plot_accuracy, plot_loss, plot_precision @app.cell(hide_code=True) def pefspec_ploc_accuracy(mo, perfspec, plot_accuracy): _plot_acc=plot_accuracy(perfspec) if perfspec['vars']['history'] != None and mo.running_in_notebook(): _output = mo.as_html(_plot_acc.gcf()) else: _output = None mo.md( f""" ## Model Accuracy history From model train plot accuracy and epochs {_output} """ ) return @app.cell(hide_code=True) def pefspec_plot_loss(mo, perfspec, plot_loss): _plot_loss = plot_loss(perfspec) if perfspec['vars']['history'] != None and mo.running_in_notebook(): _output = mo.as_html(_plot_loss.gcf()) else: _output = None mo.md( f""" ## Model loss history From model train loss {_output} """ ) return @app.cell(hide_code=True) def perfspec_plot_precision(mo, perfspec, plot_precision): _plot_pre = plot_precision(perfspec) if perfspec['vars']['history'] != None and mo.running_in_notebook(): mo.md( f""" From model train plot Precision {mo.as_html(_plot_pre.gcf())} """ ) return @app.cell(hide_code=True) def perfspec_confusion_matric( load_model_from_path, make_confusion_matrix, mo, perfspec, ): if mo.running_in_notebook(): if perfspec['vars'].get('model') == None: load_model_from_path(perfspec['settings']['verbose']) if perfspec['vars'].get('model') != None: make_confusion_matrix(perfspec) mo.md("### Confusion Matrix") return @app.cell(hide_code=True) def perfspec_evaluate_model(Path, mo, np, prepare_train): def evaluate_model(test_input=[], test_labels=[],model=None): if model == None: return if len(test_input) > 0: #Evaluate the model on test data #(test_loss, test_precision, test_recall, test_f1_score) = perfspec['vars']['model'].evaluate(test_input, test_labels) (test_loss,test_accuracy) = model.evaluate(test_input, test_labels) print(f"Test Accuracy: {"{:2.4f}".format(test_accuracy)}") print(f"Test Loss: {"{:2.4f}".format(test_loss)}") #print(f"Precision: {test_precision}") #print(f"Recall: {test_recall}") #print(f"F1 Score: {test_f1_score}") def run_evaluate(perfspec): # load_trained_model() if perfspec['vars']['model'] == None: return (perfspec['vars']['X'], perfspec['vars']['y'], perfspec['vars']['_y']) = prepare_train(perfspec) print ("\nEvaluate Model") X=perfspec['vars']['X'], y=perfspec['vars']['y'], train_size = int(perfspec['defaults']['train_size'] * len(X)) train_X, val_X = X[:train_size], X[train_size:] train_y, val_y = y[:train_size], y[train_size:] evaluate_model(val_X,val_y,perfspec['vars']['model']) def history_info(perfspec): import json from keras.src.callbacks import History if perfspec['vars']['history'] != None: if isinstance(perfspec['vars']['history'], History): model_history = perfspec['vars']['history'].history else: model_history = perfspec['vars']['history'] else: if not Path(perfspec['settings']['model_history_filepath']).exists(): print(f"Not found: {perfspec['settings']['model_history_filepath']}") model_history = {} else: with open(perfspec['settings']['model_history_filepath']) as history_file: model_history = json.load(history_file) if model_history != None: from prettytable import PrettyTable train_loss = model_history['loss'] val_loss = model_history['val_loss'] train_acc = model_history['accuracy'] val_acc = model_history['val_accuracy'] table_find = PrettyTable() # Find the epoch with the minimum validation loss best_epoch_val_loss = np.argmin(val_loss) # The index of the minimum validation loss #Find the epoch with the maximum validation accuracy best_epoch_val_acc = np.argmax(val_acc) # The index of the maximum validation accuracy #print ("\nFrom Model History") table_find.field_names = ["description", "value"] table_find.align["description"] = "l" table_find.align["value"] = "r" table_find.border = True table_find.add_rows([ ["Best Epoch (Validation Loss)",(best_epoch_val_loss + 1)], ["Validation Loss at Best Epoch","{:2.4f}".format(val_loss[best_epoch_val_loss])], ["Best Epoch (Validation Accuracy)",(best_epoch_val_acc + 1)], ["Validation Accuracy at Best Epoch","{:2.4f}".format(val_acc[best_epoch_val_acc])] ]) if mo.running_in_notebook() : return table_find.get_formatted_string('html') else: return table_find.get_formatted_string('text') else: return "" return evaluate_model, history_info, run_evaluate @app.cell(hide_code=True) def perfspec_run_evaluate_model_run( history_info, mo, perfspec, run_evaluate, ): #with mo.capture_stdout() as buffer: # run_evaluate(perfspec) #_output = buffer.getvalue() _output=run_evaluate(perfspec) #_history_info = history_info(perfspec) mo.md( f""" ## Evaluate Model {mo.md(history_info((perfspec)))} """ ) return @app.cell(hide_code=True) def perfspec_test_model_prediction( lib_get_input_sequence, lib_predict_action, load_model_from_path, mo, perfspec, verbose, ): _verbose = "1" if mo.running_in_notebook() else perfspec['settings']['verbose'] _input_sequence = lib_get_input_sequence(perfspec['settings']['input_str'],perfspec['vars']['unique_actions']) if len(_input_sequence) > 0: if perfspec['vars']['model'] != None: _model = perfspec['vars']['model'] else: _model = load_model_from_path(perfspec,verbose) if _model != None: (encoded_input,predicted_probabilities) = lib_predict_action( _model, perfspec['settings']['sequence_length'], _input_sequence, perfspec['vars']['label_encoder'], _verbose ) mo.md( r""" ## Test Model Prediction Use **{input_sequence}** with trained model created or loaded
from {model_filepath} input value can be changed in **command-line** with **--input** `value` argument
with **--verbose** option more info is show in **command-line** mode """ ) return encoded_input, predicted_probabilities if __name__ == "__main__": app.run()