import marimo

__generated_with = "0.10.16"
app = marimo.App(width="medium")


@app.cell(hide_code=True)
def title():
    import marimo as mo
    notebook_name = 'model_perfspec.py'

    from lib_perfspec import perfspec_vars
    (_,_defs) = perfspec_vars.run()
    perfspec = _defs['perfspec']

    from lib_perfspec import perfspec_header
    (_,_defs) = perfspec_header.run()
    lib_header = _defs['header']
    lib_intro = _defs['intro']

    mo.md(
        f"""
        {lib_header(notebook_name)}

        ## Info about **{perfspec['app']['train_mode']}** trained model
        """
    )
    return (
        lib_header,
        lib_intro,
        mo,
        notebook_name,
        perfspec,
        perfspec_header,
        perfspec_vars,
    )


@app.cell(hide_code=True)
def imports():
    from pathlib import Path
    import numpy as np
    return Path, np


@app.cell(hide_code=True)
def intro_load(Path, lib_intro, mo, notebook_name, perfspec):
    verbose = perfspec['settings']['verbose']
    perfspec['vars'] = {}

    from lib_perfspec import perfspec_args
    (_,_defs) = perfspec_args.run()

    if not Path(perfspec['defaults']['models_dirpath']).exists(): 
       exit(f"Trained models dir path not found: {perfspec['defaults']['models_dirpath']}")  

    if not Path(perfspec['defaults']['checkpoints_dirpath']).exists(): 
       exit(f"Trained checkpoints models dir path not found: {perfspec['defaults']['checkpoints_dirpath']}")  

    if not Path(perfspec['defaults']['data_dirpath']).exists(): 
       exit(f"data dir path not found: {perfspec['defaults']['data_dirpath']}")  

    verbose=perfspec['settings'].get('verbose')

    from lib_perfspec import perfspec_load_actions
    (_,_defs) = perfspec_load_actions.run()
    lib_load_actions = _defs['load_actions']

    from lib_perfspec import perfspec_input_sequence
    (_,_defs) = perfspec_input_sequence.run()
    lib_get_input_sequence = _defs['get_input_sequence']

    from lib_perfspec import perfspec_predict
    _, _defs = perfspec_predict.run()
    lib_predict_action = _defs['predict_action']

    perfspec['vars']['model'] = None
    perfspec['vars']['history'] = None

    (perfspec['vars']['actions'], 
    perfspec['vars']['unique_actions'], 
    perfspec['vars']['label_encoder'], 
    perfspec['vars']['encoded_actions']
    ) = lib_load_actions(
        actions_path=perfspec['settings'].get('actions_filepath'),
        verbose=None
    )

    perfspec['vars']['input_sequence'] = lib_get_input_sequence(
        input_str=perfspec['settings']['input_str'], 
        unique_actions=perfspec['vars']['unique_actions']
    )

    from train_perfspec import perfspec_prepare_model_train
    (_,_defs) = perfspec_prepare_model_train.run()
    lib_prepare_train = _defs['prepare_train']

    from train_perfspec import perfspec_load_model_from_path
    (_,_defs) = perfspec_load_model_from_path.run()
    lib_load_model_from_path = _defs['load_model_from_path']

    from train_perfspec import perfspec_evaluate_model
    (_,_defs) = perfspec_evaluate_model.run()
    lib_evaluate_model = _defs['evaluate_model']
    lib_run_evaluate = _defs['run_evaluate']
    lib_history_info = _defs['history_info']

    from train_perfspec import perfspec_plot_history
    (_,_defs) = perfspec_plot_history.run()
    plot_history = _defs['plot_history']

    from train_perfspec import perfspec_plot_defs
    (_,_defs) = perfspec_plot_defs.run()
    lib_plot_accuracy = _defs['plot_accuracy']
    lib_plot_loss = _defs['plot_loss']
    lib_plot_precision = _defs['plot_precision']

    from train_perfspec import perfspec_define_confusion_matrix
    (_,_defs) = perfspec_define_confusion_matrix.run()
    lib_make_confusion_matrix = _defs['make_confusion_matrix']

    mo.md(
        f"""

        {lib_intro(notebook_name)}

        """
    )
    return (
        lib_evaluate_model,
        lib_get_input_sequence,
        lib_history_info,
        lib_load_actions,
        lib_load_model_from_path,
        lib_make_confusion_matrix,
        lib_plot_accuracy,
        lib_plot_loss,
        lib_plot_precision,
        lib_predict_action,
        lib_prepare_train,
        lib_run_evaluate,
        perfspec_args,
        perfspec_define_confusion_matrix,
        perfspec_evaluate_model,
        perfspec_input_sequence,
        perfspec_load_actions,
        perfspec_load_model_from_path,
        perfspec_plot_defs,
        perfspec_plot_history,
        perfspec_predict,
        perfspec_prepare_model_train,
        plot_history,
        verbose,
    )


@app.cell(hide_code=True)
def perfspec_render_model_browser(mo, perfspec):
    model_file_browser = mo.ui.file_browser(
        initial_path=perfspec['defaults']['models_dirpath'], 
        multiple=False,
        filetypes=['.keras'],
        selection_mode='file',
        restrict_navigation=True,
        #label="<small>Model</small>",
    )

    def parse_model_browse_selection_value(values_only=True):
        if len(model_file_browser.value) > 0 and not reset_model_button.value:
            if values_only:
                return model_file_browser.value[0].path 
            else:
                return f"Selection <b>{model_file_browser.value[0].path}</b>" 
        else:        
            if values_only:
                return ""
            else:
                return f"Use default value"

    reset_model_button = mo.ui.button(label="Reset selected Model", kind="neutral",
            value=False, on_click=lambda value: True if not value else False)
    return (
        model_file_browser,
        parse_model_browse_selection_value,
        reset_model_button,
    )


@app.cell(hide_code=True)
def _(
    mo,
    model_file_browser,
    parse_model_browse_selection_value,
    reset_model_button,
):
    mo.md(
        f"""
        {   mo.vstack(items=[
            mo.md(""" ## Model Selection
                      #### Select a Model or use default one
            """),
            model_file_browser,
            mo.hstack(items=[
                " ", 
                reset_model_button,
            ]),
            mo.hstack(items=[
                mo.md(f"{parse_model_browse_selection_value(False)}"),
                mo.md(f"<small>reset: {reset_model_button.value}</small>"),
            ]),
            ])
        }
        """
    )
    return


@app.cell(hide_code=True)
def settings(
    Path,
    lib_load_model_from_path,
    mo,
    parse_model_browse_selection_value,
    perfspec,
):
    _model_filepath = parse_model_browse_selection_value(True)
    if _model_filepath != "":
        perfspec["settings"]["model_filepath"] = _model_filepath
        perfspec["settings"]["model_history_filepath"] = (
            Path(_model_filepath).parent / perfspec["defaults"]["history_path"]
        )

        if perfspec["settings"]["verbose"] != None or mo.running_in_notebook():
            print(f"Model filepath: {perfspec['settings']['model_filepath']}")
            print(
                f"History filepath: {perfspec['settings']['model_history_filepath']}"
            )


    perfspec["vars"]["model"] = lib_load_model_from_path(perfspec, None)
    if perfspec["vars"]["model"] == None:
        exit("No model loaded !")
    return


@app.cell(hide_code=True)
def command_line_options(mo, notebook_name):
    from lib_perfspec import perfspec_out_settings
    (_,_defs) = perfspec_out_settings.run()
    out_settings = _defs['out_settings']

    mo.md(out_settings(notebook_name))
    return out_settings, perfspec_out_settings


@app.cell(hide_code=True)
def load_trainded_model(mo, notebook_name):
    from lib_perfspec import perfspec_cli_ops
    (_,_defs) = perfspec_cli_ops.run()
    out_cli_ops = _defs['out_cli_ops']
    mo.accordion({ 
        "Mostrar command Line options ": out_cli_ops(notebook_name) 
    })
    return out_cli_ops, perfspec_cli_ops


@app.cell(hide_code=True)
def model_summary(lib_load_model_from_path, mo, perfspec):
    def load_trained_model():
        if perfspec['vars']['model'] == None:
           _verbose = "1" if mo.running_in_notebook() else perfspec['settings']['verbose']
           perfspec['vars']['model'] = lib_load_model_from_path(perfspec,_verbose)
        if perfspec['vars']['model'] == None:
            print ("No model loaded !")

    mo.md(
        r"""
        ## Load trained model
        """
    )
    return (load_trained_model,)


@app.cell(hide_code=True)
def evaluate_mode(load_trained_model, mo, perfspec):
    def model_sumary():
        load_trained_model()
        if perfspec['vars']['model'] != None:
            perfspec['vars']['model'].summary()

    _summary = model_sumary()
    mo.md(
        f"""
        ## Model Summary
        """
    )
    return (model_sumary,)


@app.cell(hide_code=True)
def history_info(lib_history_info, lib_run_evaluate, mo, perfspec):
    _evaluate_run=lib_run_evaluate(perfspec)
    _history=lib_history_info(perfspec)
    mo.md(
        r"""
        ## Evaluate Model
        """
    )
    return


@app.cell(hide_code=True)
def model_plot_accuracy(lib_history_info, mo, perfspec):
    _history=lib_history_info(perfspec)
    mo.md(
        f"""
        ## History Model info

        {mo.md(_history)}
        """
    )
    return


@app.cell(hide_code=True)
def model_plot_loss(lib_plot_accuracy, mo, perfspec):
    _plot_acc=lib_plot_accuracy(perfspec)

    if perfspec['vars']['history'] != None and mo.running_in_notebook():
       _output =  mo.as_html(_plot_acc.gcf())
    else:
       _output = None

    mo.md(
            f"""
            ## Model Accuracy history

            From model train plot accuracy and epochs

            {_output}

            """
    )
    return


@app.cell(hide_code=True)
def model_plot_precision(lib_plot_loss, mo, perfspec):
    _plot_loss = lib_plot_loss(perfspec)

    if perfspec['vars']['history'] != None and mo.running_in_notebook():
       _output =  mo.as_html(_plot_loss.gcf())
    else:
       _output = None

    mo.md(
        f"""
        ## Model loss  history
        From model train loss

        {_output}

        """
    )
    return


@app.cell(hide_code=True)
def confusion_matrix(lib_plot_precision, mo, perfspec):
    _plt_pre = lib_plot_precision(perfspec)
    if _plt_pre is not None:
        mo.md(
            f"""

            From model train plot Precision

            {mo.as_html(_plt_pre.gcf())}

            """
        )
    return


@app.cell
def _(lib_load_model_from_path, lib_make_confusion_matrix, mo, perfspec):
    if mo.running_in_notebook():
          if perfspec['vars'].get('model') == None: 
             lib_load_model_from_path(perfspec['settings']['verbose'])
          if perfspec['vars'].get('model') != None: 

              lib_make_confusion_matrix(perfspec)

    mo.md("### Confusion Matrix")
    return


@app.cell(hide_code=True)
def title_show_values_prediction(mo):
    mo.md(
        f"""
        ## Run Model Prediction

        To explore in interactive mode use **run_perfspec.py** notebook
        """
    ).callout('neutral')
    return


@app.cell(hide_code=True)
def show_values_prediction(mo, perfspec):
    def on_show_values_prediction():
        if perfspec['settings']['sequence_length'] > 1 or len(perfspec['vars']['unique_actions']) == 0:
            return ""
        else:
            return f"""
                ## Show Values Prediction
            """

    mo.md(on_show_values_prediction())
    return (on_show_values_prediction,)


@app.cell(hide_code=True)
def title_run_prediction(
    lib_predict_action,
    load_trained_model,
    mo,
    perfspec,
):
    def show_values_prediction():
        if perfspec['settings']['sequence_length'] > 1 or len(perfspec['vars']['unique_actions']) == 0:
           return None
        #if mo.running_in_notebook():
        import pandas as pd
        if perfspec['vars']['model'] == None:
           load_trained_model()
        if perfspec['vars']['model'] != None:
           return None
        data=[]
        for act in perfspec['vars']['unique_actions']:
           #print (act)
           (_,prediction) = lib_predict_action(
              perfspec['vars']['model'],
              perfspec['settings']['sequence_length'],
              [act],
              perfspec['vars']['label_encoder'],
              "-1"
           )
           data.append({"action": act, 'prediction': prediction['action'][0], 'value': prediction['max_value']})
        df_res = pd.DataFrame(data)    
        transformed_df = mo.ui.dataframe(df_res)
        return (transformed_df)

    data_frame=show_values_prediction()
    data_frame
    return data_frame, show_values_prediction


@app.cell
def _(
    lib_get_input_sequence,
    lib_history_info,
    lib_predict_action,
    lib_run_evaluate,
    mo,
    model_sumary,
    perfspec,
):
    _verbose = "1" if mo.running_in_notebook() else perfspec['settings']['verbose']
    _input_sequence = lib_get_input_sequence(perfspec['settings']['input_str'],perfspec['vars']['unique_actions'])
    if len(_input_sequence) > 0:
        #_model = lib_load_model_from_path(_verbose)
        if _verbose == "1":
           model_sumary()
           lib_run_evaluate(perfspec)
           lib_history_info(perfspec)
           print ("\nPrediction")

        if perfspec['vars']['model'] != None:
            (encoded_input,predicted_probabilities) = lib_predict_action(
                   perfspec['vars']['model'],
                   perfspec['settings']['sequence_length'],
                   _input_sequence,
                   perfspec['vars']['label_encoder'],
                   _verbose
            )
        else:
            print (f"No model found !")
    return encoded_input, predicted_probabilities


if __name__ == "__main__":
    app.run()