perfspec-learning/learning/python/model_perfspec.py
2025-01-28 14:21:29 +00:00

494 lines
14 KiB
Python

import marimo
__generated_with = "0.10.17"
app = marimo.App(width="medium")
@app.cell(hide_code=True)
def title():
import marimo as mo
notebook_name = 'model_perfspec.py'
from lib_perfspec import perfspec_vars
(_,_defs) = perfspec_vars.run()
perfspec = _defs['perfspec']
from lib_perfspec import perfspec_header
(_,_defs) = perfspec_header.run()
lib_header = _defs['header']
lib_intro = _defs['intro']
mo.md(
f"""
{lib_header(notebook_name)}
## Info about **{perfspec['app']['train_mode']}** trained model
"""
)
return (
lib_header,
lib_intro,
mo,
notebook_name,
perfspec,
perfspec_header,
perfspec_vars,
)
@app.cell(hide_code=True)
def imports():
from pathlib import Path
import numpy as np
return Path, np
@app.cell(hide_code=True)
def intro_load(Path, lib_intro, mo, notebook_name, perfspec):
verbose = perfspec['settings']['verbose']
perfspec['vars'] = {}
from lib_perfspec import perfspec_args
(_,_defs) = perfspec_args.run()
if not Path(perfspec['defaults']['models_dirpath']).exists():
exit(f"Trained models dir path not found: {perfspec['defaults']['models_dirpath']}")
if not Path(perfspec['defaults']['checkpoints_dirpath']).exists():
exit(f"Trained checkpoints models dir path not found: {perfspec['defaults']['checkpoints_dirpath']}")
if not Path(perfspec['defaults']['data_dirpath']).exists():
exit(f"data dir path not found: {perfspec['defaults']['data_dirpath']}")
verbose=perfspec['settings'].get('verbose')
from lib_perfspec import perfspec_load_actions
(_,_defs) = perfspec_load_actions.run()
lib_load_actions = _defs['load_actions']
from lib_perfspec import perfspec_input_sequence
(_,_defs) = perfspec_input_sequence.run()
lib_get_input_sequence = _defs['get_input_sequence']
from lib_perfspec import perfspec_predict
_, _defs = perfspec_predict.run()
lib_predict_action = _defs['predict_action']
perfspec['vars']['model'] = None
perfspec['vars']['history'] = None
(perfspec['vars']['actions'],
perfspec['vars']['unique_actions'],
perfspec['vars']['label_encoder'],
perfspec['vars']['encoded_actions']
) = lib_load_actions(
actions_path=perfspec['settings'].get('actions_filepath'),
verbose=None
)
perfspec['vars']['input_sequence'] = lib_get_input_sequence(
input_str=perfspec['settings']['input_str'],
unique_actions=perfspec['vars']['unique_actions']
)
from train_perfspec import perfspec_prepare_model_train
(_,_defs) = perfspec_prepare_model_train.run()
lib_prepare_train = _defs['prepare_train']
from train_perfspec import perfspec_load_model_from_path
(_,_defs) = perfspec_load_model_from_path.run()
lib_load_model_from_path = _defs['load_model_from_path']
from train_perfspec import perfspec_evaluate_model
(_,_defs) = perfspec_evaluate_model.run()
lib_evaluate_model = _defs['evaluate_model']
lib_run_evaluate = _defs['run_evaluate']
lib_history_info = _defs['history_info']
from train_perfspec import perfspec_plot_history
(_,_defs) = perfspec_plot_history.run()
plot_history = _defs['plot_history']
from train_perfspec import perfspec_plot_defs
(_,_defs) = perfspec_plot_defs.run()
lib_plot_accuracy = _defs['plot_accuracy']
lib_plot_loss = _defs['plot_loss']
lib_plot_precision = _defs['plot_precision']
from train_perfspec import perfspec_define_confusion_matrix
(_,_defs) = perfspec_define_confusion_matrix.run()
lib_make_confusion_matrix = _defs['make_confusion_matrix']
mo.md(
f"""
{lib_intro(notebook_name)}
"""
)
return (
lib_evaluate_model,
lib_get_input_sequence,
lib_history_info,
lib_load_actions,
lib_load_model_from_path,
lib_make_confusion_matrix,
lib_plot_accuracy,
lib_plot_loss,
lib_plot_precision,
lib_predict_action,
lib_prepare_train,
lib_run_evaluate,
perfspec_args,
perfspec_define_confusion_matrix,
perfspec_evaluate_model,
perfspec_input_sequence,
perfspec_load_actions,
perfspec_load_model_from_path,
perfspec_plot_defs,
perfspec_plot_history,
perfspec_predict,
perfspec_prepare_model_train,
plot_history,
verbose,
)
@app.cell(hide_code=True)
def perfspec_render_model_browser(mo, perfspec):
model_file_browser = mo.ui.file_browser(
initial_path=perfspec['defaults']['models_dirpath'],
multiple=False,
filetypes=['.keras'],
selection_mode='file',
restrict_navigation=True,
#label="<small>Model</small>",
)
def parse_model_browse_selection_value(values_only=True):
if len(model_file_browser.value) > 0 and not reset_model_button.value:
if values_only:
return model_file_browser.value[0].path
else:
return f"Selection <b>{model_file_browser.value[0].path}</b>"
else:
if values_only:
return ""
else:
return f"Use default value"
reset_model_button = mo.ui.button(label="Reset selected Model", kind="neutral",
value=False, on_click=lambda value: True if not value else False)
return (
model_file_browser,
parse_model_browse_selection_value,
reset_model_button,
)
@app.cell(hide_code=True)
def _(
mo,
model_file_browser,
parse_model_browse_selection_value,
reset_model_button,
):
mo.md(
f"""
{ mo.vstack(items=[
mo.md(""" ## Model Selection
#### Select a Model or use default one
"""),
model_file_browser,
mo.hstack(items=[
" ",
reset_model_button,
]),
mo.hstack(items=[
mo.md(f"{parse_model_browse_selection_value(False)}"),
mo.md(f"<small>reset: {reset_model_button.value}</small>"),
]),
])
}
"""
)
return
@app.cell(hide_code=True)
def settings(
Path,
lib_load_model_from_path,
mo,
parse_model_browse_selection_value,
perfspec,
):
_model_filepath = parse_model_browse_selection_value(True)
if _model_filepath != "":
perfspec["settings"]["model_filepath"] = _model_filepath
perfspec["settings"]["model_history_filepath"] = (
Path(_model_filepath).parent / perfspec["defaults"]["history_path"]
)
if perfspec["settings"]["verbose"] != None or mo.running_in_notebook():
print(f"Model filepath: {perfspec['settings']['model_filepath']}")
print(
f"History filepath: {perfspec['settings']['model_history_filepath']}"
)
perfspec["vars"]["model"] = lib_load_model_from_path(perfspec, None)
if perfspec["vars"]["model"] == None:
exit("No model loaded !")
return
@app.cell(hide_code=True)
def command_line_options(mo, notebook_name):
from lib_perfspec import perfspec_out_settings
(_,_defs) = perfspec_out_settings.run()
out_settings = _defs['out_settings']
mo.md(out_settings(notebook_name))
return out_settings, perfspec_out_settings
@app.cell(hide_code=True)
def load_trainded_model(mo, notebook_name):
from lib_perfspec import perfspec_cli_ops
(_,_defs) = perfspec_cli_ops.run()
out_cli_ops = _defs['out_cli_ops']
mo.accordion({
"Mostrar command Line options ": out_cli_ops(notebook_name)
})
return out_cli_ops, perfspec_cli_ops
@app.cell(hide_code=True)
def model_summary(lib_load_model_from_path, mo, perfspec):
def load_trained_model():
if perfspec['vars']['model'] == None:
_verbose = "1" if mo.running_in_notebook() else perfspec['settings']['verbose']
perfspec['vars']['model'] = lib_load_model_from_path(perfspec,_verbose)
if perfspec['vars']['model'] == None:
print ("No model loaded !")
mo.md(
r"""
## Load trained model
"""
)
return (load_trained_model,)
@app.cell(hide_code=True)
def evaluate_mode(load_trained_model, mo, perfspec):
def model_sumary():
load_trained_model()
if perfspec['vars']['model'] != None:
perfspec['vars']['model'].summary()
_summary = model_sumary()
mo.md(
f"""
## Model Summary
"""
)
return (model_sumary,)
@app.cell(hide_code=True)
def history_info(lib_history_info, lib_run_evaluate, mo, perfspec):
_evaluate_run=lib_run_evaluate(perfspec)
_history=lib_history_info(perfspec)
mo.md(
r"""
## Evaluate Model
"""
)
return
@app.cell(hide_code=True)
def model_plot_accuracy(lib_history_info, mo, perfspec):
_history=lib_history_info(perfspec)
mo.md(
f"""
## History Model info
{mo.md(_history)}
"""
)
return
@app.cell(hide_code=True)
def model_plot_loss(lib_plot_accuracy, mo, perfspec):
_plot_acc=lib_plot_accuracy(perfspec)
if perfspec['vars']['history'] != None and mo.running_in_notebook():
_output = mo.as_html(_plot_acc.gcf())
else:
_output = None
mo.md(
f"""
## Model Accuracy history
From model train plot accuracy and epochs
{_output}
"""
)
return
@app.cell(hide_code=True)
def model_plot_precision(lib_plot_loss, mo, perfspec):
_plot_loss = lib_plot_loss(perfspec)
if perfspec['vars']['history'] != None and mo.running_in_notebook():
_output = mo.as_html(_plot_loss.gcf())
else:
_output = None
mo.md(
f"""
## Model loss history
From model train loss
{_output}
"""
)
return
@app.cell(hide_code=True)
def confusion_matrix(lib_plot_precision, mo, perfspec):
_plt_pre = lib_plot_precision(perfspec)
if _plt_pre is not None:
mo.md(
f"""
From model train plot Precision
{mo.as_html(_plt_pre.gcf())}
"""
)
return
@app.cell(hide_code=True)
def _(lib_load_model_from_path, lib_make_confusion_matrix, mo, perfspec):
if mo.running_in_notebook():
if perfspec['vars'].get('model') == None:
lib_load_model_from_path(perfspec['settings']['verbose'])
if perfspec['vars'].get('model') != None:
lib_make_confusion_matrix(perfspec)
mo.md("### Confusion Matrix")
return
@app.cell(hide_code=True)
def title_show_values_prediction(mo):
mo.md(
f"""
## Run Model Prediction
To explore in interactive mode use **run_perfspec.py** notebook
"""
).callout('neutral')
return
@app.cell(hide_code=True)
def show_values_prediction(mo, perfspec):
def on_show_values_prediction():
if perfspec['settings']['sequence_length'] > 1 or len(perfspec['vars']['unique_actions']) == 0:
return ""
else:
return f"""
## Show Values Prediction
"""
mo.md(on_show_values_prediction())
return (on_show_values_prediction,)
@app.cell(hide_code=True)
def title_run_prediction(
lib_predict_action,
load_trained_model,
mo,
perfspec,
):
def show_values_prediction():
if perfspec['settings']['sequence_length'] > 1 or len(perfspec['vars']['unique_actions']) == 0:
return None
#if mo.running_in_notebook():
import pandas as pd
if perfspec['vars']['model'] == None:
load_trained_model()
if perfspec['vars']['model'] != None:
return None
data=[]
for act in perfspec['vars']['unique_actions']:
#print (act)
(_,prediction) = lib_predict_action(
perfspec['vars']['model'],
perfspec['settings']['sequence_length'],
[act],
perfspec['vars']['label_encoder'],
"-1"
)
data.append({"action": act, 'prediction': prediction['action'][0], 'value': prediction['max_value']})
df_res = pd.DataFrame(data)
transformed_df = mo.ui.dataframe(df_res)
return (transformed_df)
data_frame=show_values_prediction()
data_frame
return data_frame, show_values_prediction
@app.cell(hide_code=True)
def _(
lib_get_input_sequence,
lib_history_info,
lib_predict_action,
lib_run_evaluate,
mo,
model_sumary,
perfspec,
):
_verbose = "1" if mo.running_in_notebook() else perfspec['settings']['verbose']
_input_sequence = lib_get_input_sequence(perfspec['settings']['input_str'],perfspec['vars']['unique_actions'])
if len(_input_sequence) > 0:
#_model = lib_load_model_from_path(_verbose)
if _verbose == "1":
model_sumary()
lib_run_evaluate(perfspec)
lib_history_info(perfspec)
print ("\nPrediction")
if perfspec['vars']['model'] != None:
(encoded_input,predicted_probabilities) = lib_predict_action(
perfspec['vars']['model'],
perfspec['settings']['sequence_length'],
_input_sequence,
perfspec['vars']['label_encoder'],
_verbose
)
else:
print (f"No model found !")
return encoded_input, predicted_probabilities
if __name__ == "__main__":
app.run()