perfspec-learning/learning/python/run_perfspec.py
2025-01-27 00:02:23 +00:00

323 lines
9.5 KiB
Python

import marimo
__generated_with = "0.10.16"
app = marimo.App(width="medium")
@app.cell(hide_code=True)
def title():
import marimo as mo
notebook_name = 'run_perfspec.py'
from lib_perfspec import perfspec_vars
(_,_defs) = perfspec_vars.run()
perfspec = _defs['perfspec']
from lib_perfspec import perfspec_header
(_,_defs) = perfspec_header.run()
lib_header = _defs['header']
lib_intro = _defs['intro']
mo.md(
f"""
{lib_header(notebook_name)}
### Use **{perfspec['app']['train_mode']}** trained model
"""
)
return (
lib_header,
lib_intro,
mo,
notebook_name,
perfspec,
perfspec_header,
perfspec_vars,
)
@app.cell
def imports():
from pathlib import Path
return (Path,)
@app.cell(hide_code=True)
def intro_load(Path, lib_intro, mo, notebook_name, perfspec):
verbose = perfspec['settings']['verbose']
perfspec['vars'] = {}
from lib_perfspec import perfspec_args
(_,_defs) = perfspec_args.run()
if not Path(perfspec['defaults']['models_dirpath']).exists():
exit(f"Trained models dir path not found: {perfspec['defaults']['models_dirpath']}")
if not Path(perfspec['defaults']['checkpoints_dirpath']).exists():
exit(f"Trained checkpoints models dir path not found: {perfspec['defaults']['checkpoints_dirpath']}")
if not Path(perfspec['defaults']['data_dirpath']).exists():
exit(f"data dir path not found: {perfspec['defaults']['data_dirpath']}")
verbose=perfspec['settings'].get('verbose')
from lib_perfspec import perfspec_load_actions
(_,_defs) = perfspec_load_actions.run()
lib_load_actions = _defs['load_actions']
from lib_perfspec import perfspec_input_sequence
(_,_defs) = perfspec_input_sequence.run()
lib_get_input_sequence = _defs['get_input_sequence']
from lib_perfspec import perfspec_predict
_, _defs = perfspec_predict.run()
lib_predict_action = _defs['predict_action']
perfspec['vars']['model'] = None
perfspec['vars']['history'] = None
(perfspec['vars']['actions'],
perfspec['vars']['unique_actions'],
perfspec['vars']['label_encoder'],
perfspec['vars']['encoded_actions']
) = lib_load_actions(
actions_path=perfspec['settings'].get('actions_filepath'),
verbose=None
)
perfspec['vars']['input_sequence'] = lib_get_input_sequence(
input_str=perfspec['settings']['input_str'],
unique_actions=perfspec['vars']['unique_actions']
)
from train_perfspec import perfspec_load_model_from_path
(_,_defs) = perfspec_load_model_from_path.run()
lib_load_model_from_path = _defs['load_model_from_path']
mo.md(
f"""
{lib_intro(notebook_name)}
"""
)
return (
lib_get_input_sequence,
lib_load_actions,
lib_load_model_from_path,
lib_predict_action,
perfspec_args,
perfspec_input_sequence,
perfspec_load_actions,
perfspec_load_model_from_path,
perfspec_predict,
verbose,
)
@app.cell(hide_code=True)
def settings(mo, notebook_name):
from lib_perfspec import perfspec_out_settings
(_,_defs) = perfspec_out_settings.run()
out_settings = _defs['out_settings']
mo.md(out_settings(notebook_name))
return out_settings, perfspec_out_settings
@app.cell(hide_code=True)
def command_line(mo, notebook_name):
from lib_perfspec import perfspec_cli_ops
(_,_defs) = perfspec_cli_ops.run()
out_cli_ops = _defs['out_cli_ops']
mo.accordion({
"Mostrar command Line options ": out_cli_ops(notebook_name)
})
return out_cli_ops, perfspec_cli_ops
@app.cell(hide_code=True)
def load_trained_model(lib_load_model_from_path, mo, perfspec):
def load_trained_model():
if perfspec['vars']['model'] == None:
_verbose = perfspec['settings']['verbose'] # if mo.running_in_notebook() else perfspec['settings']['verbose']
perfspec['vars']['model'] = lib_load_model_from_path(perfspec,_verbose)
if perfspec['vars']['model'] == None:
print ("No model loaded !")
mo.md(
r"""
## Load trained model
"""
)
return (load_trained_model,)
@app.cell(hide_code=True)
def model_summary(load_trained_model, mo, perfspec):
def model_sumary():
load_trained_model()
if perfspec['vars']['model'] != None:
perfspec['vars']['model'].summary()
if perfspec['settings']['verbose'] is not None or mo.running_in_notebook():
model_sumary()
mo.md(
r"""
## Model Summary
"""
)
return (model_sumary,)
@app.cell(hide_code=True)
def perfspec_def_predict_input(
input_multiselect,
lib_get_input_sequence,
lib_predict_action,
load_trained_model,
mo,
model_sumary,
perfspec,
run_evaluate,
):
def predict_input(pred_input, verbose):
#verbose = "1" if mo.running_in_notebook() else perfspec['settings']['verbose']
if type(pred_input) == str and pred_input != '':
input_sequence = lib_get_input_sequence(pred_input,perfspec['vars']['unique_actions'])
elif type(pred_input) != str and len(pred_input) > 0:
input_sequence = pred_input
elif mo.running_in_notebook() and len(input_multiselect.value) > 0:
input_sequence= input_multiselect.value
elif perfspec['defaults']['pred_input'] != '':
input_sequence = lib_get_input_sequence(perfspec['defaults']['pred_input'],perfspec['vars']['unique_actions'])
else:
print (f"No input found ! {input_sequence}")
return
if len(input_sequence) > 0:
if verbose == "x":
model_sumary()
run_evaluate()
print ("\nPrediction")
if perfspec['vars']['model'] == None:
load_trained_model()
if perfspec['vars']['model'] != None:
(encoded_input,predicted_probabilities) = lib_predict_action(
perfspec['vars']['model'],
perfspec['settings']['sequence_length'],
input_sequence,
perfspec['vars']['label_encoder'],
verbose
)
return (encoded_input,predicted_probabilities)
else:
print (f"No Model found to predict {input_sequence}")
return (None,None)
return (predict_input,)
@app.cell(hide_code=True)
def multiselect_def(mo, perfspec):
input_multiselect = mo.ui.multiselect(
options=perfspec['vars']['unique_actions'],
full_width=True,
max_selections=perfspec['settings']['sequence_length'],
)
return (input_multiselect,)
@app.cell(hide_code=True)
def perfspec_def_show_value_selector(
input_multiselect,
mo,
perfspec,
predict_input,
):
def show_value():
if len(input_multiselect.value) > 0:
if len(input_multiselect.value) > perfspec['settings']['sequence_length']:
return ""
(_,prediction) = predict_input(input_multiselect.value, None)
table_info = mo.md(f"""
| desc. | value | % |
| ---- | --- | --- |
| input | {",".join(input_multiselect.value)}| |
| prediction | {prediction['action'][0]} |{prediction['max_value']}|
""")
return mo.md(f"{mo.vstack(justify='center',items=[mo.md("<h3 style='margin-left: 7em'>Actions</h3>"),table_info])}")
else:
return ""
return (show_value,)
@app.cell(hide_code=True)
def title_run_prediction(mo, perfspec):
mo.md(
f"""
## Run Model Prediction
Use **{perfspec['vars']['input_sequence']}** with trained model <u>created</u> or <u>loaded</u>
<br>from {perfspec['settings']['model_filepath']}
input value can be changed in **command-line** with **--input** `value` argument<br>
with **--verbose** option more info is show in **command-line** mode
"""
)
return
@app.cell(hide_code=True)
def _(mo, perfspec, predict_input):
def run_prediction():
_verbose = perfspec["settings"]["verbose"]
if perfspec["settings"]["verbose"] is None and mo.running_in_notebook():
_verbose=1
predict_input("", _verbose)
run_prediction()
mo.md(
"""
### Test default prediction
"""
)
return (run_prediction,)
@app.cell(hide_code=True)
def main(mo):
mo.md("""<a id='main' />""")
return
@app.cell(hide_code=True)
def perfspec_predictions_selector(
input_multiselect,
mo,
perfspec,
show_value,
):
def show_selector():
if mo.running_in_notebook():
if perfspec['settings']['sequence_length'] > 1:
seq_msg = f"<br> <small>For better `prediction` use at least **{perfspec['settings']['sequence_length']}** options"
else:
seq_msg = ""
return f"""
{mo.hstack(widths="equal",gap=3,wrap=True,items=[
mo.vstack(items=[mo.md("""
## Predictions
Select values to get prediction
"""),input_multiselect]),
show_value()]
)}
> <small>if notebook **autorun** is not set, use <u>click on cell to run</u></small>
{seq_msg}
"""
else:
return ""
mo.md(show_selector())
return (show_selector,)
if __name__ == "__main__":
app.run()