Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

Execution Complete

Perfect question! Let me explain clearly:

The Orchestrator IS USED and IS CRITICAL

That code example was misleading. Here’s the real architecture:

How It Actually Works

┌──────────────────────────────────────────────────┐ │ User runs: provisioning server create –orchestrated └───────────────────┬──────────────────────────────┘ ↓ ┌───────────────────────┐ │ Nushell CLI │ │ (provisioning) │ └───────────┬───────────┘ ↓ HTTP POST ┌───────────────────────────────┐ │ Rust Orchestrator Daemon │ │ (provisioning-orchestrator) │ │ │ │ • Task Queue │ │ • Workflow Engine │ │ • Dependency Resolution │ │ • Parallel Execution │ └───────────┬───────────────────┘ ↓ spawns subprocess ┌───────────────────────────────┐ │ Nushell Business Logic │ │ nu -c “use servers/create.nu”│ │ │ │ Executes actual provider │ │ API calls, configuration │ └───────────────────────────────┘ The Flow in Detail

  1. User Command:

provisioning server create wuji –orchestrated 2. Nushell CLI submits to orchestrator:

CLI code

http post http://localhost:9090/workflows/servers/create { infra: “wuji” params: {…} }

Returns: workflow_id = “abc-123”

  1. Orchestrator receives and queues:

// Orchestrator receives HTTP request async fn create_server_workflow(request) { let task = Task::new(TaskType::ServerCreate, request); task_queue.enqueue(task).await; // Queue for execution return workflow_id; // Return immediately } 4. Orchestrator executes via Nushell subprocess:

// Orchestrator spawns Nushell to run business logic async fn execute_task(task: Task) { let output = Command::new(“nu”) .arg(“-c”) .arg(“use /usr/local/lib/provisioning/servers/create.nu; create-server ‘wuji’”) .output() .await?;

// Orchestrator manages: retry, checkpointing, monitoring

} 5. Nushell executes the actual work:

servers/create.nu

export def create-server [name: string] { # This is the business logic # Calls UpCloud API, creates server, etc. let provider = (load-provider) $provider | create-vm $name } Why This Architecture?

Problem It Solves

Without Orchestrator (Old Way):

provisioning → template.nu → cluster.nu → taskserv.nu → provider.nu (Deep call stack = crashes!) With Orchestrator (Current):

provisioning → Orchestrator → spawns fresh Nushell subprocess for each task (No deep nesting, parallel execution, recovery) What Orchestrator Provides

Task Queue - Reliable execution even if system crashes Parallel Execution - Run 10 tasks at once (Rust async) Workflow Engine - Handle complex dependencies Checkpointing - Resume from failure Monitoring - Real-time progress tracking What Nushell Provides

Business Logic - Provider integrations, config generation Flexibility - Easy to modify without recompiling Readability - Shell-like syntax for infrastructure ops Multi-Repo Impact: NONE on Integration

In Monorepo:

provisioning/ ├── core/nulib/ # Nushell code └── platform/orchestrator/ # Rust code In Multi-Repo:

provisioning-core/ # Separate repo, installs to /usr/local/lib/provisioning provisioning-platform/ # Separate repo, installs to /usr/local/bin/provisioning-orchestrator Integration is the same:

Orchestrator calls: nu -c “use /usr/local/lib/provisioning/servers/create.nu” Nushell calls: http post http://localhost:9090/workflows/… No code dependency, just runtime coordination!

The Orchestrator IS Essential

The orchestrator:

✅ IS USED for all complex operations ✅ IS CRITICAL for workflow system (v3.0) ✅ IS REQUIRED for batch operations (v3.1) ✅ SOLVES deep call stack issues ✅ PROVIDES performance and reliability That misleading code example showed how Platform doesn’t link to Core code, but it absolutely uses the orchestrator for coordination.

Does this clear it up? The orchestrator is the performance and reliability layer that makes the whole system work!

Cost: $0.1565 USD Duration: 137.69s Turns: 40 Total tokens: 7466(7 in, 7459 out)