354 lines
10 KiB
Markdown
Raw Normal View History

2025-10-07 10:32:04 +01:00
# AI-Powered Infrastructure Automation
This module provides comprehensive AI capabilities for the provisioning system, enabling natural language infrastructure generation and management.
## Features
### 🤖 **Core AI Capabilities**
- Natural language KCL file generation
- Intelligent template creation
- Infrastructure query processing
- Configuration validation and improvement
- Chat/webhook integration
### 📝 **KCL Generation Types**
- **Server Configurations** (`servers.k`) - Generate server definitions with storage, networking, and services
- **Provider Defaults** (`*_defaults.k`) - Create provider-specific default settings
- **Settings Configuration** (`settings.k`) - Generate main infrastructure settings
- **Cluster Configuration** - Kubernetes and container orchestration setups
- **Task Services** - Individual service configurations
### 🔧 **AI Providers Supported**
- **OpenAI** (GPT-4, GPT-3.5)
- **Anthropic Claude** (Claude-3.5 Sonnet, Claude-3)
- **Generic/Local** (Ollama, local LLM APIs)
## Configuration
### Environment Variables
```bash
# Enable AI functionality
export PROVISIONING_AI_ENABLED=true
# Set provider
export PROVISIONING_AI_PROVIDER="openai" # or "claude", "generic"
# API Keys (choose based on provider)
export OPENAI_API_KEY="your-openai-api-key"
export ANTHROPIC_API_KEY="your-anthropic-api-key"
export LLM_API_KEY="your-generic-api-key"
# Optional overrides
export PROVISIONING_AI_MODEL="gpt-4"
export PROVISIONING_AI_TEMPERATURE="0.3"
export PROVISIONING_AI_MAX_TOKENS="2048"
```
### KCL Configuration
```kcl
import settings
settings.Settings {
ai = settings.AIProvider {
enabled = True
provider = "openai"
model = "gpt-4"
max_tokens = 2048
temperature = 0.3
enable_template_ai = True
enable_query_ai = True
enable_webhook_ai = False
}
}
```
### YAML Configuration (`ai.yaml`)
```yaml
enabled: true
provider: "openai"
model: "gpt-4"
max_tokens: 2048
temperature: 0.3
timeout: 30
enable_template_ai: true
enable_query_ai: true
enable_webhook_ai: false
```
## Usage
### 🎯 **Command Line Interface**
#### Generate Infrastructure with AI
```bash
# Interactive generation
./provisioning ai generate --interactive
# Generate specific configurations
./provisioning ai gen -t server -p upcloud -i "3 Kubernetes nodes with Ceph storage" -o servers.k
./provisioning ai gen -t defaults -p aws -i "Production environment in us-west-2" -o aws_defaults.k
./provisioning ai gen -t settings -i "E-commerce platform with secrets management" -o settings.k
# Enhanced generation with validation
./provisioning generate-ai servers "High-availability Kubernetes cluster with 3 control planes and 5 workers" --validate --provider upcloud
# Improve existing configurations
./provisioning ai improve -i existing_servers.k -o improved_servers.k
# Validate and fix KCL files
./provisioning ai validate -i servers.k
```
#### Interactive AI Chat
```bash
# Start chat session
./provisioning ai chat
# Single query
./provisioning ai chat -i "How do I set up a 3-node Kubernetes cluster with persistent storage?"
# Test AI connectivity
./provisioning ai test
# Show configuration
./provisioning ai config
```
### 🧠 **Programmatic API**
#### Generate KCL Files
```nushell
use lib_provisioning/ai/templates.nu *
# Generate server configuration
let servers = (generate_server_kcl "3 Kubernetes nodes for production workloads" "upcloud" "servers.k")
# Generate provider defaults
let defaults = (generate_defaults_kcl "High-availability setup in EU region" "aws" "aws_defaults.k")
# Generate complete infrastructure
let result = (generate_full_infra_ai "E-commerce platform with database and caching" "upcloud" "" false)
```
#### Process Natural Language Queries
```nushell
use lib_provisioning/ai/lib.nu *
# Process infrastructure queries
let response = (ai_process_query "Show me all servers with high CPU usage")
# Generate templates
let template = (ai_generate_template "Docker Swarm cluster with monitoring" "cluster")
# Validate configurations
let validation = (validate_and_fix_kcl "servers.k")
```
### 🌐 **Webhook Integration**
#### HTTP Webhook
```bash
curl -X POST http://your-server/webhook \
-H "Content-Type: application/json" \
-d '{
"message": "generate 3 kubernetes servers with monitoring",
"user_id": "user123",
"channel": "infrastructure"
}'
```
#### Slack Integration
```nushell
# Process Slack webhook payload
let slack_payload = {
text: "generate upcloud defaults for development",
user_id: "U123456",
channel_id: "C789012"
}
let response = (process_slack_webhook $slack_payload)
```
#### Discord Integration
```nushell
# Process Discord webhook
let discord_payload = {
content: "show infrastructure status",
author: { id: "123456789" },
channel_id: "987654321"
}
let response = (process_discord_webhook $discord_payload)
```
## Examples
### 🏗️ **Infrastructure Generation Examples**
#### 1. Kubernetes Cluster Setup
```bash
./provisioning generate-ai servers "
High-availability Kubernetes cluster with:
- 3 control plane nodes (4 CPU, 8GB RAM each)
- 5 worker nodes (8 CPU, 16GB RAM each)
- Dedicated storage nodes with Ceph
- Private networking with load balancer
- Monitoring and logging stack
" --provider upcloud --output k8s_cluster_servers.k --validate
```
#### 2. AWS Production Environment
```bash
./provisioning generate-ai defaults "
AWS production environment configuration:
- Region: us-west-2 (primary), us-east-1 (backup)
- High availability across 3 AZs
- Enhanced security with VPC, private subnets
- Auto-scaling groups for applications
- RDS Multi-AZ for databases
- ElastiCache for caching
- CloudFront CDN
- Route53 DNS management
" --provider aws --output aws_prod_defaults.k
```
#### 3. Development Environment
```bash
./provisioning generate-ai infra "
Development environment for a microservices application:
- 1 jump/bastion server
- 3 application servers (containerized workloads)
- 1 database server (PostgreSQL)
- 1 cache server (Redis)
- Shared NFS storage
- Development tools (Git, CI/CD agents)
- Monitoring (Prometheus, Grafana)
" --provider local --interactive
```
### 💬 **Chat Examples**
**User:** *"I need to set up a scalable web application infrastructure"*
**AI:** *"I can help you design a scalable web infrastructure! Let me generate a configuration that includes:*
*- Load balancers for high availability*
*- Auto-scaling application servers*
*- Database with read replicas*
*- Caching layer*
*- CDN for static assets*
*Would you like me to create this for a specific provider like AWS, UpCloud, or local deployment?"*
**User:** *"Generate it for UpCloud with monitoring included"*
**AI:** *"Perfect! I'll generate an UpCloud configuration with monitoring. Here's your infrastructure setup:*
```kcl
import upcloud_prov
servers = [
// Load balancer
upcloud_prov.Server_upcloud {
hostname = "lb-01"
plan = "2xCPU-4GB"
// ... configuration
}
// Application servers with auto-scaling
// Database servers with replication
// Monitoring stack with Prometheus/Grafana
]
```
*This configuration includes 7 servers optimized for high availability and performance. Would you like me to explain any specific part or generate additional configurations?"*
### 🚀 **Advanced Features**
#### Interactive Configuration Builder
```bash
./provisioning ai generate --interactive
```
This launches an interactive session that asks specific questions to build optimal configurations:
1. **Infrastructure Purpose** - Web app, data processing, ML training, etc.
2. **Scale Requirements** - Number of users, traffic patterns, growth projections
3. **Provider Preference** - Cloud provider selection and regions
4. **Service Requirements** - Databases, caching, storage, monitoring
5. **Security Needs** - Compliance requirements, network isolation
6. **Budget Constraints** - Cost optimization preferences
#### Configuration Optimization
```bash
# Analyze and improve existing configurations
./provisioning ai improve existing_config.k --output optimized_config.k
# Get AI suggestions for performance improvements
./provisioning ai query --prompt "How can I optimize this configuration for better performance?" --context file:servers.k
```
## Integration with Existing Workflows
### 🔄 **Workflow Integration**
1. **Generate** configurations with AI
2. **Validate** using KCL compiler
3. **Review** and customize as needed
4. **Apply** using provisioning commands
5. **Monitor** and iterate
```bash
# Complete workflow example
./provisioning generate-ai servers "Production Kubernetes cluster" --validate --output servers.k
./provisioning server create --check # Review before creation
./provisioning server create # Actually create infrastructure
```
### 🛡️ **Security & Best Practices**
- **API Keys**: Store in environment variables, never in code
- **Validation**: Always validate AI-generated configurations
- **Review**: Human review recommended for production deployments
- **Version Control**: Track all generated configurations
- **Testing**: Use `--check` mode for dry runs
### 🧪 **Testing & Development**
```bash
# Test AI functionality
./provisioning ai test
# Test webhook processing
./provisioning ai webhook test
# Debug mode for troubleshooting
./provisioning generate-ai servers "test setup" --debug
```
## Architecture
### 🏗️ **Module Structure**
```
ai/
├── lib.nu # Core AI functionality and API integration
├── templates.nu # KCL template generation functions
├── webhook.nu # Chat/webhook processing
├── mod.nu # Module exports
└── README.md # This documentation
```
### 🔌 **Integration Points**
- **Settings System** - AI configuration management
- **Secrets Management** - Integration with SOPS/KMS for secure API keys
- **Template Engine** - Enhanced with AI-generated content
- **Validation System** - Automated KCL syntax checking
- **CLI Commands** - Natural language command processing
### 🌊 **Data Flow**
1. **Input** - Natural language description or chat message
2. **Intent Detection** - Parse and understand user requirements
3. **Context Building** - Gather relevant infrastructure context
4. **AI Processing** - Generate appropriate KCL configurations
5. **Validation** - Syntax and semantic validation
6. **Output** - Formatted KCL files and user feedback
This AI integration transforms the provisioning system into an intelligent infrastructure automation platform that understands natural language and generates production-ready configurations.