Implement intelligent agent learning from Knowledge Graph execution history with per-task-type expertise tracking, recency bias, and learning curves. ## Phase 5.3 Implementation ### Learning Infrastructure (✅ Complete) - LearningProfileService with per-task-type expertise metrics - TaskTypeExpertise model tracking success_rate, confidence, learning curves - Recency bias weighting: recent 7 days weighted 3x higher (exponential decay) - Confidence scoring prevents overfitting: min(1.0, executions / 20) - Learning curves computed from daily execution windows ### Agent Scoring Service (✅ Complete) - Unified AgentScore combining SwarmCoordinator + learning profiles - Scoring formula: 0.3*base + 0.5*expertise + 0.2*confidence - Rank agents by combined score for intelligent assignment - Support for recency-biased scoring (recent_success_rate) - Methods: rank_agents, select_best, rank_agents_with_recency ### KG Integration (✅ Complete) - KGPersistence::get_executions_for_task_type() - query by agent + task type - KGPersistence::get_agent_executions() - all executions for agent - Coordinator::load_learning_profile_from_kg() - core KG→Learning integration - Coordinator::load_all_learning_profiles() - batch load for multiple agents - Convert PersistedExecution → ExecutionData for learning calculations ### Agent Assignment Integration (✅ Complete) - AgentCoordinator uses learning profiles for task assignment - extract_task_type() infers task type from title/description - assign_task() scores candidates using AgentScoringService - Fallback to load-based selection if no learning data available - Learning profiles stored in coordinator.learning_profiles RwLock ### Profile Adapter Enhancements (✅ Complete) - create_learning_profile() - initialize empty profiles - add_task_type_expertise() - set task-type expertise - update_profile_with_learning() - update swarm profiles from learning ## Files Modified ### vapora-knowledge-graph/src/persistence.rs (+30 lines) - get_executions_for_task_type(agent_id, task_type, limit) - get_agent_executions(agent_id, limit) ### vapora-agents/src/coordinator.rs (+100 lines) - load_learning_profile_from_kg() - core KG integration method - load_all_learning_profiles() - batch loading for agents - assign_task() already uses learning-based scoring via AgentScoringService ### Existing Complete Implementation - vapora-knowledge-graph/src/learning.rs - calculation functions - vapora-agents/src/learning_profile.rs - data structures and expertise - vapora-agents/src/scoring.rs - unified scoring service - vapora-agents/src/profile_adapter.rs - adapter methods ## Tests Passing - learning_profile: 7 tests ✅ - scoring: 5 tests ✅ - profile_adapter: 6 tests ✅ - coordinator: learning-specific tests ✅ ## Data Flow 1. Task arrives → AgentCoordinator::assign_task() 2. Extract task_type from description 3. Query KG for task-type executions (load_learning_profile_from_kg) 4. Calculate expertise with recency bias 5. Score candidates (SwarmCoordinator + learning) 6. Assign to top-scored agent 7. Execution result → KG → Update learning profiles ## Key Design Decisions ✅ Recency bias: 7-day half-life with 3x weight for recent performance ✅ Confidence scoring: min(1.0, total_executions / 20) prevents overfitting ✅ Hierarchical scoring: 30% base load, 50% expertise, 20% confidence ✅ KG query limit: 100 recent executions per task-type for performance ✅ Async loading: load_learning_profile_from_kg supports concurrent loads ## Next: Phase 5.4 - Cost Optimization Ready to implement budget enforcement and cost-aware provider selection.
4.1 KiB
4.1 KiB
VAPORA v1.0 - Quick Start Deployment
5-Minute Production Deployment Guide
Prerequisites Check
# Verify you have these tools
kubectl version --client # Kubernetes CLI
docker --version # Docker for building images
nu --version # Nushell for scripts
Step 1: Build Docker Images (5 minutes)
# From project root
# Build all images and push to Docker Hub
nu scripts/build-docker.nu --registry docker.io --tag v0.1.0 --push
# Or build locally (no push)
nu scripts/build-docker.nu
Output: 4 Docker images built (~175MB total)
Step 2: Configure Secrets (2 minutes)
# Edit secrets file
nano kubernetes/03-secrets.yaml
# Replace these values:
# - jwt-secret: $(openssl rand -base64 32)
# - anthropic-api-key: sk-ant-xxxxx
# - openai-api-key: sk-xxxxx
# - surrealdb-pass: $(openssl rand -base64 32)
NEVER commit this file with real secrets!
Step 3: Configure Ingress (1 minute)
# Edit ingress file
nano kubernetes/08-ingress.yaml
# Update this line:
# - host: vapora.yourdomain.com # Change to your domain
Step 4: Deploy to Kubernetes (3 minutes)
# Dry run to validate
nu scripts/deploy-k8s.nu --dry-run
# Deploy for real
nu scripts/deploy-k8s.nu
# Wait for all pods to be ready
kubectl wait --for=condition=ready pod -l app -n vapora --timeout=300s
Output: 11 pods running (2 backend, 2 frontend, 3 agents, 1 mcp, 1 db, 1 nats)
Step 5: Verify Deployment (2 minutes)
# Check all pods are running
kubectl get pods -n vapora
# Check services
kubectl get svc -n vapora
# Get ingress IP/hostname
kubectl get ingress -n vapora
# Test health endpoints
kubectl exec -n vapora deploy/vapora-backend -- curl -s http://localhost:8080/health
Step 6: Access VAPORA
- Configure DNS: Point your domain to ingress IP
- Access UI:
https://vapora.yourdomain.com - Check health:
https://vapora.yourdomain.com/api/v1/health
Troubleshooting
Pods not starting?
kubectl describe pod -n vapora <pod-name>
kubectl logs -n vapora <pod-name>
Can't connect to database?
kubectl logs -n vapora surrealdb-0
kubectl exec -n vapora deploy/vapora-backend -- curl http://surrealdb:8000/health
Image pull errors?
# Check if images exist
docker images | grep vapora
# Create registry secret
kubectl create secret docker-registry regcred \
-n vapora \
--docker-server=docker.io \
--docker-username=<user> \
--docker-password=<pass>
Alternative: Provisioning Deployment
For advanced deployment with service mesh and auto-scaling:
cd provisioning/vapora-wrksp
# Validate configuration
nu scripts/validate-provisioning.nu
# Deploy full stack
provisioning workflow run workflows/deploy-full-stack.yaml
See: provisioning-integration/README.md
Next Steps
- Set up monitoring (Prometheus + Grafana)
- Configure TLS certificates (cert-manager)
- Set up backups for SurrealDB
- Configure HPA (Horizontal Pod Autoscaler)
- Enable log aggregation
- Test agent workflows
Full Documentation
- Comprehensive Guide:
DEPLOYMENT.md - K8s README:
kubernetes/README.md - Provisioning Guide:
provisioning-integration/README.md - Project Overview:
PROJECT_COMPLETION_REPORT.md
Quick Commands Reference
# Build images
nu scripts/build-docker.nu --push
# Deploy
nu scripts/deploy-k8s.nu
# Validate
nu scripts/validate-deployment.nu
# Validate Provisioning
nu scripts/validate-provisioning.nu
# Check status
kubectl get all -n vapora
# View logs
kubectl logs -n vapora -l app=vapora-backend -f
# Scale agents
kubectl scale deployment vapora-agents -n vapora --replicas=5
# Rollback
kubectl rollout undo deployment/vapora-backend -n vapora
# Uninstall
kubectl delete namespace vapora
VAPORA v1.0 - Production Ready ✅ Total Deployment Time: ~15 minutes Status: All 5 phases completed