perfspec-learning/install.md

130 lines
3.4 KiB
Markdown
Raw Permalink Normal View History

2025-01-27 08:31:52 +00:00
---
gitea: none
include_toc: true
---
2025-01-27 08:02:41 +00:00
# PerfSPEC Learning Phase INSTALLATION
2025-01-27 08:26:48 +00:00
By follwing thesed steps you can easy run **PerfSPEC notebooks**
2025-01-27 08:02:41 +00:00
## Python
2025-01-27 08:31:52 +00:00
> [!CAUTION]
> Due to [TensorFlow requiremens](https://www.tensorflow.org/install/pip) **Python 3.12** is the latest compatible
2025-01-27 08:02:41 +00:00
For Linux
I end up by downloading **Python soruce** and compile
For MacOS
Use [Homebrew](https://brew.sh/)
```
brew install python@3.12 python3-pip
```
2025-01-27 08:39:13 +00:00
> [!WARNING]
2025-01-27 17:18:11 +00:00
> After install Python with **pip** and **virtualenv** <br>
2025-01-27 08:02:41 +00:00
> Install [TensorFlow requiremens](https://www.tensorflow.org/install/pip)
```
pip install tensorflow
```
### Package manager
Use [uv](https://docs.astral.sh/uv/)
> An extremely fast Python package and project manager, written in Rust.
MacOS and Linux
```
sudo curl -LsSf https://astral.sh/uv/install.sh | sh
```
To add $HOME/.local/bin to your PATH, either restart your shell or run:
source $HOME/.local/bin/env (sh, bash, zsh)
source $HOME/.local/bin/env.fish (fish)
## Notebook tool
Rather than use [Jupyter](https://jupyter.org/) this project use [Marimo](https://marimo.io/) for a lot of good reasons !
#### Marimo
```
python -m venv marimo-env
source marimo-env/bin/activate
uv pip install marimo
```
Check with `marimo tutorial intro --no-token`
A web server should be run at `http://localhost:2718` with a token if not use **--no-token** option for a non secure session
[Marimo](https://marimo.io/) configuration is in `$HOME/.config/marimo.toml`
2025-01-27 08:34:01 +00:00
## PerfSPEC Learning Phase
2025-01-27 08:02:41 +00:00
2025-01-27 08:34:01 +00:00
#### 1 - `git clone this repository`
2025-01-27 08:02:41 +00:00
```
2025-01-27 20:56:50 +00:00
git clone https://repo.jesusperez.pro/jesus/perfSPEC-learning.git
2025-01-27 08:02:41 +00:00
cd perfspec-learning
```
2025-01-27 08:34:01 +00:00
#### 2 - Make structures
2025-01-27 08:02:41 +00:00
For **data** use [data_sample.tar.xc](https://repo.jesusperez.pro/jesus/perfspec-learning/src/branch/main/data_sample.tar.xz)
```
tar xvJf data_sample.tar.xz
2025-01-27 18:13:30 +00:00
```
2025-01-27 08:02:41 +00:00
For trained models use [models_sample.tar.xz](https://repo.jesusperez.pro/jesus/perfspec-learning/src/branch/main/models_sample.tar.xz)
```
tar xvJf models_sample.tar.xz
2025-01-27 18:13:30 +00:00
```
2025-01-27 08:02:41 +00:00
Raw log file [raw-audit-logs.log.xz](https://repo.jesusperez.pro/jesus/perfspec-learning/src/branch/main/raw-audit-logs.log.xz) is included in **data** directory
2025-01-27 08:34:01 +00:00
#### 3 - Run notebook tool like this
2025-01-27 08:02:41 +00:00
Inside `perfspec-learning` path
```
cd learning/python
uvx marimo edit --no-token --watch
```
Connect with a browser to **http://localhost:2718**
Start with [run_perfspec.py](https://repo.jesusperez.pro/jesus/perfspec-learning/src/branch/main/learning/python/run_perfspec.py)
2025-01-27 08:40:23 +00:00
>[!IMPORTANT]
2025-01-27 08:31:52 +00:00
> A red box will appear at top left corner prompting to install required packages for the loaded notebook, in console where localhost:2718 appers listening [uv](https://docs.astral.sh/uv/) will do the magic by installing them using **pip**
2025-01-27 08:02:41 +00:00
Note each notebook can import some extra packages like [train_perfspec.py](https://repo.jesusperez.pro/jesus/perfspec-learning/src/branch/main/learning/python/train_perfspec.py)
In any case some notebook import content from others.
2025-01-27 08:31:52 +00:00
> [!Tip]
> When all notebooks have being loaded it will be posible also to use them as a Python script by run it in a terminal o console like this:
2025-01-27 08:02:41 +00:00
```
python model_perfspec.py -- --help
```
2025-01-27 08:34:47 +00:00
There is also an static html mode to be used, more info: [script mode](https://docs.marimo.io/guides/scripts/)
2025-01-27 08:02:41 +00:00
Some Python packages could be not detected and will require manual installation via command-line, simply for example, use:
```
uv pip install scikit-learn
uv pip install prettytable
```