chore: fix CustomCallback and isinstance of History

This commit is contained in:
Jesús Pérez Lorenzo 2025-01-27 06:52:20 +00:00
parent 1e6d04c816
commit 8274609ad1

View File

@ -1,6 +1,15 @@
# /// script
# requires-python = ">=3.13"
# dependencies = [
# "keras==3.8.0",
# "marimo",
# "numpy==2.2.2",
# ]
# ///
import marimo import marimo
__generated_with = "0.10.16" __generated_with = "0.10.17"
app = marimo.App(width="medium") app = marimo.App(width="medium")
@ -458,15 +467,21 @@ def f1_score_metric(PrecisionMetric, RecallMetric, keras, mo, tf):
@app.cell(hide_code=True) @app.cell(hide_code=True)
def custom_validation_metrics(X_val, mo, tf, y_val): def custom_validation_metrics(mo, tf):
#Custom callback to compute metrics on validation data #Custom callback to compute metrics on validation data
class CustomValidationMetrics(tf.keras.callbacks.Callback): class CustomValidationMetrics(tf.keras.callbacks.Callback):
def __init__(self, X_val, y_val):
super().__init__() # Initialize the parent class
self.X_val = X_val
self.y_val = y_val
def on_epoch_end(self, epoch, logs=None): def on_epoch_end(self, epoch, logs=None):
val_predictions = self.model.predict(X_val, verbose=0) val_predictions = self.model.predict(self.X_val, verbose=0)
val_predictions = (val_predictions > 0.5).astype(int) # Binarize predictions val_predictions = (val_predictions > 0.5).astype(int) # Binarize predictions
precision = tf.keras.metrics.Precision()(y_val, val_predictions) # Compute precision, recall, and f1-score
recall = tf.keras.metrics.Recall()(y_val, val_predictions) precision = tf.keras.metrics.Precision()(self.y_val, val_predictions)
recall = tf.keras.metrics.Recall()(self.y_val, val_predictions)
f1_score = 2 * (precision * recall) / (precision + recall + 1e-7) f1_score = 2 * (precision * recall) / (precision + recall + 1e-7)
print(f"\nEpoch {epoch + 1} Validation Metrics - Precision: {precision:.4f}, Recall: {recall:.4f}, F1 Score: {f1_score:.4f}") print(f"\nEpoch {epoch + 1} Validation Metrics - Precision: {precision:.4f}, Recall: {recall:.4f}, F1 Score: {f1_score:.4f}")
@ -543,7 +558,7 @@ def show_train_model_shape(mo, perfspec, prepare_train, verbose):
@app.cell(hide_code=True) @app.cell(hide_code=True)
def make_model(mo, np, perfspec): def make_model(CustomValidationMetrics, mo, np, perfspec):
# Define the LSTM model # Define the LSTM model
def make_model(X=[],y=[],label_encoder=[], encoded_actions=[]): def make_model(X=[],y=[],label_encoder=[], encoded_actions=[]):
if len(X) == 0 or len(y) == 0: if len(X) == 0 or len(y) == 0:
@ -569,13 +584,13 @@ def make_model(mo, np, perfspec):
perfspec['vars']['model'] = Sequential( perfspec['vars']['model'] = Sequential(
[ [
#Embedding(input_dim=vocab_size, output_dim=embedding_dim), #Embedding(input_dim=vocab_size, output_dim=embedding_dim),
Input(shape=(perfspec['settings']['sequence_length'], 1)),
LSTM( LSTM(
perfspec['settings']['lstm_units_1'], perfspec['settings']['lstm_units_1'],
return_sequences=True, return_sequences=True,
recurrent_dropout=perfspec['settings']['dropout_rate'], recurrent_dropout=perfspec['settings']['dropout_rate'],
#input_shape = (2,vocab_size), input_shape=(perfspec['settings']['sequence_length'], 1),
), ),
Input(shape=(perfspec['settings']['sequence_length'], 1)),
LSTM( LSTM(
perfspec['settings']['lstm_units_2'], perfspec['settings']['lstm_units_2'],
return_sequences=False, return_sequences=False,
@ -622,11 +637,12 @@ def make_model(mo, np, perfspec):
# Callbacks # Callbacks
early_stopping = EarlyStopping( early_stopping = EarlyStopping(
monitor="val_loss", patience=5, restore_best_weights=True monitor="val_loss", patience=10, restore_best_weights=True
) )
lr_reduction = ReduceLROnPlateau( lr_reduction = ReduceLROnPlateau(
monitor="val_loss", patience=3, factor=0.5, min_lr=0.0001 monitor="val_loss", patience=8, factor=0.8, min_lr=0.0001
) )
custom_metrics_callback = CustomValidationMetrics(X, y)
if perfspec['settings']['checkpoint_mode'] == "weights": if perfspec['settings']['checkpoint_mode'] == "weights":
# Save only the weights of the model instead of the full model. # Save only the weights of the model instead of the full model.
checkpoint = ModelCheckpoint( checkpoint = ModelCheckpoint(
@ -645,8 +661,9 @@ def make_model(mo, np, perfspec):
verbose=1 # Print messages when saving verbose=1 # Print messages when saving
) )
callbacks=[early_stopping,lr_reduction] #,CustomValidationMetrics] callbacks=[early_stopping,lr_reduction]
callbacks=[] #,CustomValidationMetrics] callbacks=[early_stopping,lr_reduction]
callbacks.append(custom_metrics_callback)
if checkpoint != None: if checkpoint != None:
callbacks.append(checkpoint) callbacks.append(checkpoint)
@ -676,7 +693,7 @@ def make_model(mo, np, perfspec):
This is where **model** is creates and **fit** This is where **model** is creates and **fit**
Saved in `perfspec['vars'] as `model` and `history` Saved in `perfspec['vars']` as `model` and `history`
""" """
) )
return (make_model,) return (make_model,)
@ -791,10 +808,11 @@ def perfspec_save_model(Path, mo, perfspec):
def perfspec_plot_history(Path, mo): def perfspec_plot_history(Path, mo):
def plot_history(perfspec): def plot_history(perfspec):
import json import json
from keras.src.callbacks import History
if 'vars' not in perfspec: if 'vars' not in perfspec:
return None return None
if perfspec['vars']['history'] != None: if perfspec['vars']['history'] != None:
if 'history' in perfspec['vars']['history']: if isinstance(perfspec['vars']['history'], History):
_model_history = perfspec['vars']['history'].history _model_history = perfspec['vars']['history'].history
else: else:
_model_history = perfspec['vars']['history'] _model_history = perfspec['vars']['history']
@ -993,8 +1011,9 @@ def perfspec_evaluate_model(Path, mo, np, prepare_train):
def history_info(perfspec): def history_info(perfspec):
import json import json
from keras.src.callbacks import History
if perfspec['vars']['history'] != None: if perfspec['vars']['history'] != None:
if 'history' in perfspec['vars']['history']: if isinstance(perfspec['vars']['history'], History):
model_history = perfspec['vars']['history'].history model_history = perfspec['vars']['history'].history
else: else:
model_history = perfspec['vars']['history'] model_history = perfspec['vars']['history']
@ -1007,7 +1026,7 @@ def perfspec_evaluate_model(Path, mo, np, prepare_train):
model_history = json.load(history_file) model_history = json.load(history_file)
if model_history != None: if model_history != None:
from prettytable import PrettyTable from prettytable import PrettyTable
rain_loss = model_history['loss'] train_loss = model_history['loss']
val_loss = model_history['val_loss'] val_loss = model_history['val_loss']
train_acc = model_history['accuracy'] train_acc = model_history['accuracy']
val_acc = model_history['val_accuracy'] val_acc = model_history['val_accuracy']